Inorg. Chem. 2005, 44, 468−470
Azide Addition To Give a Tetra-azazirconacycle Complex
Alan F. Heyduk,* Karen J. Blackmore, Nicole A. Ketterer, and Joseph W. Ziller
Department of Chemistry, 516 Rowland Hall, UniVersity of California, IrVine, California 92697
Received October 14, 2004
Addition of the dilithium salt, ortho-(Me3SiNLi)2C6H4, to ZrCl4 affords
a base-free, D2d-symmetric complex ZrIV[ortho-(Me3SiN)2C6H4]2 (2),
with rigorously planar ortho-phenylenediamine ligands. Lewis acidic
2 readily coordinates donor ligands such as NHEt2 to give the
five-coordinate complex, ZrIV(NHEt2)[ortho-(Me3SiN)2C6H4]2 (3),
which is also accessible by the reaction of Zr(NEt2)4 with 2 equiv
of ortho-(Me3SiNH)2C6H4. Aryl azides react with 2 and 3 to give
an unusual tetra-azametallacycle complex, 4, via 1,2-addition of a
ligand, which releases N2 and forms a coordinated amide
after a 1,3-proton shift.11 Metal mediated coupling of
two organic azides forms a tetra-azabutadiene fragment
(RNdNsNdNR), which is stabilized when coordinated to
the metal center.9,12-14 The two-electron reduced congener
tetrazenes (RNsNdNsNR2-) have been prepared by 1,3-
NH-addition of an arylamide to an aryl azide followed by
deprotonation.15 Alternatively, coordinated tetrazene frag-
ments have been obtained by the [3 + 2] reaction of an
organic azide with a zirconium imide complex.16,17 In the
course of studies on the coordination chemistry of the ortho-
phenylenediamine derived ligand [ortho-(Me3SiN)2C6H4]2-
with group 4 metals, we discovered an unusual azide reaction
leading to the formation of a tetra-azametallacycle complex,
ZrIV[ArNN(SiMe3)NNC6H4NSiMe3][ortho-(Me3SiN)2-
C6H4] (4, Ar ) para-CH3C6H4). Formally, the product-
forming reaction corresponds to a 1,2-NSi-addition to the
incoming azide. An X-ray crystal structure reveals short Ns
N bond lengths within the tetra-azametallacycle fragment,
consistent with a delocalized electronic structure that is
intermediate between a formally dianionic tetrazene fragment
and a formally neutral tetra-azabutadiene fragment.
ligand N−Si bond to the organic azide. An X-ray crystal structure
of 4 reveals a planar, five-membered metallacycle comprising the
zirconium atom, one nitrogen atom of the ortho-(Me3SiN)2C6H4
ligand, and all three nitrogen atoms of the aryl azide.
Organic azide reactions with transition metal complexes
have attracted considerable attention in recent years. Detailed
mechanistic studies of azide activation have been carried out
with Cp2TaMe(PMe3).1,2 In this system, an initial, η1-terminal
coordination mode for the azide substrate was supplanted
via rearrangement by a four-centered metallacycle intermedi-
ate. Extrusion of N2 from this intermediate gave a terminal
metal imido complex, a common final product for reactions
of organic azides and transition metal complexes.3-8 Organic
azides also show a rich insertion chemistry with transition
metal complexes. Azides react with metal carbonyls via N2
extrusion and nitrene insertion into the MsCO bond to
give isocyanates,5,9 whereas metal-stabilized phosphazido
species (RNdNsNdPR′3) can be obtained upon insertion
of an azide into a metal phosphine bond.10 Insertion of an
azide into a metal hydride bond gives an initial triazenido
Metalation of diamine 118,19 was readily achieved upon
deprotonation with nBuLi and subsequent addition of half
of an equivalent of ZrCl4 according to Scheme 1. Solvent
removal gave the crude product, ZrIV[ortho-(Me3SiN)2C6H4]2
(2), in nearly quantitative yield as a bright orange powder.
Recrystallization of crude 2 from CH2Cl2 at -35 °C gave
large orange blocks of the product in 47% overall yield; the
results of an X-ray diffraction experiment are shown in
* To whom correspondence should be addressed. E-mail: aheyduk@
uci.edu.
(1) Proulx, G.; Bergman, R. G. Organometallics 1996, 15, 684-692.
(2) Proulx, G.; Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 6382-
6383.
(11) Hillhouse, G. L.; Bercaw, J. E. Organometallics 1982, 1, 1025-
1029.
(12) Barloy, L.; Gauvin, R. M.; Osborn, J. A.; Sizun, C.; Graff, R.;
Kyritsakas, N. Eur. J. Inorg. Chem. 2001, 1699-1707.
(13) Johnson, C. E.; Trogler, W. C. Inorg. Chem. 1982, 21, 427-429.
(14) Gross, M. E.; Trogler, W. C. J. Organomet. Chem. 1981, 209, 407-
414.
(3) Wigley, D. E. Prog. Inorg. Chem. 1994, 42, 239-482.
(4) Lwowski, W. Nitrenes; Interscience Publishers: New York, 1970.
(5) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003,
125, 322-323.
(15) Lee, S. W.; Miller, G. A.; Campana, C. F.; Maciejewski, M. L.;
Trogler, W. C. J. Am. Chem. Soc. 1987, 109, 5050-5051.
(16) Michelman, R. I.; Bergman, R. G.; Andersen, R. A. Organometallics
1993, 12, 2741-2751.
(6) Jenkins, D. M.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2002,
124, 11238-11239.
(7) Guillemot, G.; Solari, E.; Floriani, C.; Rizzoli, C. Organometallics
2001, 20, 607-615.
(17) Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1995,
117, 974-985.
(8) Fickes, M. G.; Davis, W. M.; Cummins, C. C. J. Am. Chem. Soc.
1995, 117, 6384-6385.
(18) VanderLende, D. D.; Abboud, K. A.; Boncella, J. M. Organometallics
1994, 13, 3378-3380.
(9) Cenini, S.; La Monica, G. Inorg. Chim. Acta 1976, 18, 279-293.
(10) Hillhouse, G. L.; Goeden, G. V.; Haymore, B. L. Inorg. Chem. 1982,
21, 2064-2071.
(19) Boncella, J. M.; Wang, S.-Y. S.; VanderLende, D. D.; Leigh, H. R.;
Abboud, K. A.; Vaughn, W. M. J. Organomet. Chem. 1997, 530, 59-
70.
468 Inorganic Chemistry, Vol. 44, No. 3, 2005
10.1021/ic048560c CCC: $30.25
© 2005 American Chemical Society
Published on Web 01/08/2005