3212
M. L. Curtin et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3208–3212
Table 4
References and notes
Mouse pharmacokinetic data of selected compoundsa
1. Marumoto, T.; Zhang, D.; Saya, H. Nat. Rev. Cancer 2005, 5, 42.
2. Matthews, N.; Visintin, C.; Hartzoulakis, B.; Jarvis, A.; Selwood, D. L. Expert Rev.
Anticancer Ther. 2006, 6, 109.
3. (a) Yang, H.; Burke, T.; Dempsey, J.; Diaz, B.; Collins, E.; Toth, J.; Beckmann, R.;
Ye, X. FEBS Lett. 2005, 579, 3385; (b) Girdler, F.; Gascoigne, K. E.; Eyers, P. A.;
Hartmuth, S.; Crafter, C.; Foote, K. M.; Keen, N. J.; Taylor, S. S. J. Cell Sci. 2006,
119, 3664.
4. For a review of VEGF biology, see: Ferrara, N.; Gerber, H. P.; LeCouter, J. Nat.
Med. 2003, 9, 669; For an overview of the most recently approved KDR
inhibitor, see: Commander, H.; Whiteside, G.; Perry, C. Drugs 2011, 71, 1355.
5. Fojo, T. Oncologist 2008, 13, 277.
Compd
iv (3 mg/kg)
po (10 mg/kg)
F (%)
AUC (
lgÁh/mL)
t1/2 (h)
VD (L/kg)
Cl (L/hÁkg)
1
16
21
25
28
34
2
0.3
1.5
3.6
1.3
0.8
2.9
4.7
1.7
2.3
0.9
1.5
1.2
1.2
1.7
4.0
1.1
0.2
0.9
1.0
0.3
0.3
0.45
5.64
44.0
5.22
5.26
14.6
18.6
18
59
78
44
52
42
47
6. Mendel, D. B.; Laird, A. D.; Xin, X.; Louie, S. G.; Christensen, J. G.; Li, G.; Schreck,
R. E.; Abrams, T. J.; Ngai, T. J.; Lee, L. B.; Murray, L. J.; Carver, J.; Chan, E.; Moss, K.
G.; Haznedar, J. O.; Sukbuntherng, J.; Blake, R. A.; Sun, L.; Tang, C.; Miller, T.;
Shirazian, S.; McMahon, G.; Cherrington, J. M. Clin. Cancer Res. 2003, 9, 327.
7. Dai, Y.; Hartandi, K.; Ji, Z.; Ahmed, A. A.; Albert, D. H.; Bauch, J. L.; Bouska, J. J.;
Bousquet, P. F.; Cunha, G. A.; Glaser, K. B.; Harris, C. M.; Hickman, D.; Guo, J.; Li,
J.; Marcotte, P. A.; Marsh, K. C.; Moskey, M. D.; Martin, R. L.; Olson, A. M.;
Osterling, D. J.; Pease, L. P.; Soni, N. B.; Stewart, K. D.; Stoll, V. S.; Tapang, P.;
Reuter, D. R.; Davidsen, S. K.; Michaelides, M. R. J. Med. Chem. 2007, 50, 1584.
8. Heyman, H. R.; Frey, R. R.; Bousquet, P. F.; Cunha, G. A.; Moskey, M. D.; Ahmed,
A. A.; Soni, N. B.; Marcotte, P. A.; Pease, L. J.; Glaser, K. B.; Yates, M.; Bouska, J. J.;
Albert, D. H.; Black-Schaefer, C. L.; Dandliker, P. J.; Stewart, K. D.; Rafferty, P.;
Davidsen, S. K.; Micahelides, M. R.; Curtin, M. L. Bioorg. Med. Chem. Lett. 2007,
17, 1246.
a
PK studies in CD1(ICR) males.
Table 5
Kinase inhibition profile of 2
a
a
Kinase
IC50 (nM)
Kinase
IC50 (nM)
KDR
4
2
12
32
3
FYN
FGFR1
ALK
ROCK1
IGF1R
JAK2
JAK3
CDK9
GSK3a
110
188
363
456
539
Aur B
Aur A
Flt1
PDGFRb
CSF1R
LCK
9. Several Aurora inhibitors with measureable activity against KDR were
disclosed after this work was completed. For one example, ENMD-2076, see:
Fletcher, G. C.; Brokx, R. D.; Denny, T. A.; Hembrough, T. A.; Plum, S. M.; Fogler,
W. E.; Sidor, C. F.; Bray, M. R. Mol. Cancer Ther. 2011, 10, 126.
16
3
>10,000
>10,000
>10,000
>10,000
10. KDR and Aurora
B enzymatic IC50 values were determined using a
ABL
RET
12
7
homogeneous time-resolved fluorescence (HTRF) kinase assay with an ATP
concentration of 1 mM as described in Ref. 11.
a
11. Dai, Y.; Guo, Y.; Frey, R. R.; Ji, Z.; Curtin, M. L.; Ahmed, A. A.; Albert, D. H.;
Arnold, L.; Barlozzari, T.; Bauch, J. L.; Bouska, J. J.; Bousquet, P. F.; Cunha, G. A.;
Glaser, K. B.; Guo, J.; Li, J.; Marcotte, P. A.; Marsh, K. C.; Moskey, M. D.; Pease, L.
J.; Stewart, K. D.; Stoll, V. S.; Tapang, P.; Wishart, N.; Davidsen, S. K.;
Michaelides, M. R. J. Med. Chem. 2005, 48, 6066.
12. The KDR cellular IC50 values represent inhibition of KDR phosphorylation in
NIH3T3 cells stably transfected with full length human KDR. The procedure
was followed as described in Ref. 11.
13. Aurora B cellular activity was assessed by measuring induction of polyploidy in
the NCI-H1229 (NSCLC) cell line as described in Ref. 14. Initial dose-response
data obtained with this assay indicated that maximal polyploid response to
inhibitors typically did not exceed 50% and was associated with apoptosis and
loss in cell number. To avoid this complexity, a threshold potency, defined as
the concentration necessary to produce DNA content >4 N in 15% of the cell
TR-FRET assay.
of 32.1
l
M and by 25 ms at 117
l
M which represent 10- and 36-
M.
fold the predicted oral human Cmax of approximately 3.7
l
After considering the efficacy, pharmacokinetic and safety pro-
files of all analogs, it was decided that inhibitor 2 would be taken
through advanced preclinical evaluation. Evaluation of 2 for inhib-
itory activity across a panel of kinases revealed a unique kinome
profile (Table 5), characterized by potent inhibition of the VEGFR,
PDGFR and SRC families in addition to the Aurora inhibition.20
Compound 2 is lipophilic in nature (logD 4.5 at pH 7) with low
population (EC15), was chosen rather than the more common EC50
.
14. McClellan, W. J.; Dai, Y.; Abad-Zapatero, C.; Albert, D. H.; Bouska, J. J.; Glaser, K.
B.; Magoc, T. J.; Marcotte, P. A.; Osterling, D. J.; Stewart, K. D.; Davidsen, S. K.;
Michaelides, M. R. Bioorg. Med. Chem. Lett. 2011, 21, 5620.
15. For an improved synthesis of this intermediate, see: Engstrom, K. M.; Baize, A.
L.; Franczyk, T. S.; Kallemeyn, J. M.; Mulhern, M. M.; Rickert, R. C.; Wagaw, S. J.
Org. Chem. 2009, 74, 3849.
16. (a) Pelkonen, O.; Turpeinen, M.; Hakkola, J.; Honkakoski, P.; Hukkanen, J.;
Raunio, H. Arch. Toxicol. 2008, 82, 667; (b) Nettleton, D. O.; Einolf, H. J. Curr.
Topics Med. Chem. 2011, 11, 382.
17. Riley, R. J.; Grime, K.; Weaver, R. Expert Opin. Drug Metab. Toxicol. 2007, 3, 51.
18. (a) Jamieson, C.; Moir, E. M.; Rankovic, Z.; Wishart, G. J. Med. Chem. 2006, 49,
5029; (b) Vandenberg, J. I.; Walker, B. D.; Campbell, T. J. Trends Pharm. Sci. 2001,
22, 240.
19. Assay run in the absence of plasma protein.
20. For a more extensive account of the preclinical in vitro characterization of
inhibitor 2, see: Albert, D. H. et al. to be submitted.
21. For a detailed summary of the preclinical in vivo characterization of inhibitor 2
in a broad range of tumor types, see: Donawho, C. K. et al. Clin. Cancer Res., to
be submitted.
aqueous solubility (<78 lM, physiological pH range), high
permeability and extensive protein binding (>99%, all species
tested). The pharmacokinetic profile is characterized by low
plasma clearance (Clp <0.3 L/hÁkg), moderate volumes of distribu-
tion (Vss 0.4–1.2 L/kg) and half-lives of 4–5 h in mouse, rat and
dog. Inhibitor 2 demonstrates significant antitumor efficacy in both
solid and hematological xenograft models after intravenous, mini-
pump or parenteral once-weekly dosing.21
In summary, a series of thienopyridine ureas with potent activ-
ity against both KDR and Aurora B has been identified. SAR work
has provided analogs with significant cellular activity, favorable
oral PK profiles in multiple species and robust antitumor activity
in multiple preclinical models. Compound 2 from this series was
advanced into clinical trials.