of distilled dichloromethane. IR spectroscopy showed a large
peak at 2252.3 cm−1, indicating that the amine was converted to
isocyanate 5. After stirring for half an hour a solution of 1.0 g
(2.8 mmol) of amine 4 in 3 mL of distilled dichloromethane was
added. IR spectroscopy revealed a complete disappearance of
the isocyanate peak after two hours. The reaction mixture was
subjected to column chromatography (SiO2, CHCl3 : MeOH,
95 : 5 v/v) and precipitation in hexane ◦to obtain pure 6 as a
(C(O)OH), 173.39 (NHC(O)C*). MALDI-TOF MS: Mr calc.
for [M + Na]+ 487.25, found 487.09.
References
1 R. G. Denkewalter, J. Kolc and W. J. Lukasavage, US Pat., 4, 289,
872, Sept. 15, 1981.
2 D. Seebach, J. M. Lapierre, K. Skobridis and G. Greiveldinger,
Angew. Chem., Int. Ed. Engl., 1994, 106, 457–458.
3 D. Seebach, P. B. Rheiner, G. Greiveldinger, T. Butz and H. Sellner,
Top. Curr. Chem., 1998, 197, 125–164.
4 H. W. I. Peerlings and E. W. Meijer, Chem. Eur. J., 1997, 3, 1563–
1570. In this publication the values for DAB(PA-LPhe)x should be
negative instead of positive.
20
white solid (1.27 g, 85%). Mp: 107–109 C. [a] = 5 (c = 1 in
D
CHCl3). Calc. for C30H42N4O6: C, 64.96; H, 7.63; N, 10.10%,
found C, 64.82; H, 7.55; N, 10.14%. ATR-IR: m (cm−1) =
3317.3, 2931.1, 2858.3, 1732.7, 1687.1, 1645.9, 1562.5, 1521. 9,
1455.4, 1439.0, 1390.9, 1365.3, 1290.7, 1232.2, 1200.8, 1168.0,
1024.7, 734.2, 697.0. 1H-NMR (DMSO-d6): d = 1.18–1.45
(br m, 8H, CH2(CH2)4CH2), 1.38 (s, 9H, (CH3)3C), 2.7 (dd,
5 J. R. McElhanon and D. V. McGrath, J. Am. Chem. Soc., 1998, 120,
1647–1656.
6 J. F. G. A. Jansen, E. M. M. de Brabander van den Berg and E. W.
Meijer, Science, 1994, 266, 1226–1229.
1H, JH
ꢀ
ꢀꢀ = 13.6, JH
ꢀ
= 9.9, PhCHꢀHꢀꢀC*), 2.9 (dd, 1H,
–
–
Ha
=H5.0, JH
ꢀ
ꢀꢀ = 13.6, PhCHꢀHꢀꢀC*), 2.95–3.1 (m, 4H,
20
7 The specific optical rotation was originally defined as [a]D = 100.
JHꢀꢀ
–Ha
–H
a/(c.l), in which a is the observed optical rotation in degrees, c
the concentration in grams per 100 milliliter solution and l the
(CH2(CH2)4CH2), 3.8 (d, 2H, JCH2
4.1 (pseudo dt, 1H, JHa
C*H), 5.1 (s, 2H, PhCH2O), 6.15 (m, 2H, NHCONH), 6.8
(d, 1H, JHa
= 6.2, NHCH2C(O)),
ꢀ
H
–
NH
= 8.5, JHa ꢀꢀ = 5.0, JHa
= 9.9,
–
NH
–
H
–
20
length of the tube in decimeters. The notation [a]D is used to
indicate the temperature (20 ◦C) and the wavelength of the light
= 8.5, NHC*), 7.18–7.38 (m, 10H, PhH),
–NH
(D line of a sodium lamp: k = 599.6 nm). Nowadays the following
7.8 (br t, 1H, C*C(O)NH). 13C NMR (CDCl3): d = 25.86,
25.91 (CH2CH2(CH2)2CH2CH2), 28.06 (CH3)3C), 28.84,
29.75 (CH2CH2(CH2)2CH2CH2), 38.84 (CH2(CH2)4CH2),
39.54 (PhCH2C*), 41.93 (CH2C(O)O), 55.85 (C*), 66.48
(CH2-benzyl), 79.40 (C(CH3)3), 126.42, 127.93, 128.08, 128.12,
128.30, 129.10 (ArCH), 135.21, 136.86 (PhCipso -benzyl +
PhCipso CH2C*), 155.56 (NHC(O)O), 158.72 (NHC(O)NH),
171.40 (C(O)O), 171.93 (NHC(O)). MALDI-TOF MS: Mr.
calc. for [M + Na]+ 577.30, found 577.07.
20
equation is used in textbooks, which is slightly different: [a]D
=
a/(c.l). In this case the concentration is given in grams per milliliter
solution, resulting in the same value for the specific optical rotation.
Throughout this article the old convention is used, so c = 1 refers to
a concentration in grams per 100 milliliters.
8 W. T. S. Huck, L. J. Prins, R. H. Fokkens, N. M. M. Nibbering,
F. C. J. M. van Veggel and D. N. Reinhoudt, J. Am. Chem. Soc.,
1998, 120, 6240–6246.
9 S. Uppuluri, D. R. Swanson, L. T. Piehler, J. Li, G. L. Hagnauer and
D. A. Tomalia, Adv. Mater., 2000, 12, 796–800.
10 R. M. Crooks, M. Zhao, L. Sun, V. Chechik and L. K. Yeung, Acc.
Chem. Res., 2001, 34, 181–190.
11 M. Blanzat, C.-O. Turrin, E. Perez, I. Rico-Lattes, A.-M. Caminade
and J.-P. Majoral, Chem. Commun., 2002, 1864–1865.
12 N. Higashi, T. Koga and M. Niwa, ChemBioChem, 2002, 3, 448–
454.
13 M. W. P. L. Baars, A. J. Karlsson, V. Sorokin, B. F. W. de Waal and
E. W. Meijer, Angew. Chem. Int. Ed., 2000, 39, 4262–4265.
14 M. A. C. Broeren, J. L. J. van Dongen, M. Pittelkow, J. B. Christensen,
M. H. P. van Genderen and E. W. Meijer, Angew. Chem. Int. Ed.,
2004, 43, 3557–3562.
15 D. de Groot, B. F. M. de Waal, J. N. H. Reek, A. P. H. J. Schenning,
P. C. J. Kamer, E. W. Meijer and P. W. N. M. van Leeuwen, J. Am.
Chem. Soc., 2001, 123, 8453–8458.
16 U. Boas, A. J. Karlsson, B. F. M. de Waal and E. W. Meijer, J. Org.
Chem., 2001, 66, 2136–2145.
17 U. Boas, S. H. M. So¨ntjens, K. J. Jensen, J. B. Christensen and E. W.
Meijer, ChemBioChem, 2002, 3, 433–439.
18 M. Pittelkow, J. B. Christensen and E. W. Meijer, J. Polym. Sci., Part
A: Polym. Chem., 2004, 42, 3792–3799.
19 H. W. I. Peerlings and E. W. Meijer, Tetrahedron Lett., 1999, 40,
1021–1024.
20 D. Banerjee, M. A. C. Broeren, M. H. P. van Genderen, E. W. Meijer
and P. L. Rinaldi, Macromolecules, 2004, 37, 8313–8318.
21 10 mg of 6 results in 0.01/554.69 = 1.80 × 10−5 moles of L-
phenylalanine units. 10 mg of 3a results in (0.01/2038.88) × 4 =
1.96 × 10−5 moles of L-phenylalanine units. 10 mg of 3e results in
(0.01/34725.58) × 64 = 1.84 × 10−5 moles of L-phenylalanine units.
The amount of chiral units that determine the optical rotation are
approximately the same.
Nꢀ(6(Carboxymethyl-1,3-ureido)hexyl)-N-tert-Boc-L-phenyl-
alaninamide (7). To a 1 : 1 v/v mixture of t-butanol and
water (50 mL) was added 1.00 g (0.15 mmol) of ester 2 and
40 mg of Pd/C catalyst (load: 10%). Subsequently, N2 gas was
bubbled through the solution for 15 minutes. The flask was put
in a Parr-apparatus, and was shaken for 3 hours under a H2
atmosphere (pressure: 50 Psi). Subsequently the suspension was
filtered to remove the catalyst and the solvent was evaporated
in vacuo, to give acid 7 as a white sticky foam (0.75 g, 89%).
Mp: 71–73 ◦C. Calc. for C23H36N4O6: C, 59.47; H, 7.81; N,
12.06%, found C, 59.73; H, 7.94; N, 11.68%. ATR-IR: m
(cm−1) = 3312.3, 2978.7, 2932.9, 2859.8, 1646.6, 1563.3, 1498.3,
1455.3, 1440.3, 1392.6, 1366.7, 1264.9, 1248.0, 1165.4, 699.6.
1H NMR (DMSO-d6): d = 1.18–1.40 (br, 8H, CH2(CH2)4CH2),
1.29 (s, 9H, (CH3)3C), 2.7 (dd, 1H, JH
ꢀ
= 9.0, JH
ꢀ
ꢀꢀ
H
=
–
–
13.6, PhCHꢀHꢀꢀC*), 2.9 (dd, 1H, JH
ꢀ
ꢀꢀ =H1a3.6, JHꢀꢀ
= 5.0,
–H
–
Ha
PhCHꢀHꢀꢀC*), 2.95–3.1 (m, 4H, (CH2(CH2)4CH2), 3.63 (d, 2H,
JCH2
8.8, JHa
= 5.9, NHCH2C(O)), 4.1 (pseudo dt, 1H, JHa
=
–
NH
–
NH
ꢀ
= 9.0, JHa ꢀꢀ = 5.0, C*H), 6.0, 6.1 (t, 2H, JNH
NH
=
–
H
–H
–CH2
5.8, NHCONH), 6.8 (d, 1H, JHa
= 8.8, NHC*), 7.23 (m,
–
5H, PhH), 7.84 (t, 1H, C*HNHC(O)). 13C-NMR (DMSO-d6):
d = 26.34 (CH2CH2(CH2)2CH2CH2), 28.36 (C(CH3)3, 29.22,
30.22 (NHC(O)NHCH2CH2 + CH2CH2NHC(O)C*), 38.01
(CH2NHC(O)C*), 42.96 (CH2C(O)OH), 56.01 (C*H), 78.15
(C(CH3)3), 126.37, 128.20, 129.40 (PhCH), 138.37 (PhCipso ),
155.36 (NHC(O)O(CH3)3), 158.23 (NHC(O)NH), 171.51
22 These results will be published elsewhere.
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 2 8 1 – 2 8 5
2 8 5