138
R. Balamurugan et al.
LETTER
(4) (a) Collins, P. M.; Ferrier, F. J. Monosaccharides, Their
In conclusion, potassium tert-butoxide assisted Michael
addition of anomeric O-unprotected sugars to 3,4,6-tri-O-
benzyl-2-nitro-D-galactal (1) can be conveniently em-
ployed to prepare nitro group containing 1,1-linked
oligosaccharides bearing different sugar units. Addition to
2-nitrogalactal as Michael acceptor was stereoselective
leading only to a-galacto-configuration; anomerisation of
the nucleophiles, the 1-O-unprotected sugars, furnished in
most cases preferentially the a-anomer, hence a,a-1,1-
linked products were predominantly obtained. Further, it
has been demonstrated with an example that the nitro
group of the 1,1-linked oligosaccharide can be easily con-
verted into an amino group to access useful trehalosamine
analogues.
Chemistry and Their Roles in Natural Products; John Wiley
and Sons: Chichester, 1995, 317. (b) Lichtenthaler, F. W. In
Modern Synthetic Methods; Scheffold, R., Ed.; VCH:
Weinheim, 1992, 273. (c) Bols, M. Carbohydrate Building
Blocks; Wiley: New York, 1996, 49. (d) Danishefsky, S. J.;
Bilodeau, M. T. Angew. Chem., Int. Ed. Engl. 1996, 35,
1380. (e) Izumi, M.; Ichikawa, Y. Tetrahedron Lett. 1998,
39, 2079.
(5) (a) Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem.
Biochem. 1994, 50, 21. (b) Garg, H. G.; von dem Bruch, K.;
Kunz, H. Adv. Carbohydr. Chem. Biochem. 1994, 50, 277.
(6) (a) Schmidt, C. Diploma Thesis; University of Konstanz:
Germany, 1994. (b) Buchman, D. J.; Dixon, D. J.;
Hernandez-Juan, F. A. Org. Lett. 2004, 6, 1357.
(7) (a) Barroca, N.; Schmidt, R. R. Org. Lett. 2004, 6, 1551.
(b) Geiger, J.; Barroca, N.; Schmidt, R. R. Synlett 2004,
836. (c) Khodair, A. I.; Pachamuthu, K.; Schmidt, R. R.
Synthesis 2004, 53. (d) Khodair, A. I.; Winterfeld, G. A.;
Schmidt, R. R. Eur. J. Org. Chem. 2003, 1847.
Acknowledgment
This work was supported by the Deutsche Forschungsgemeinschaft
and the Fonds der Chemischen Industrie. K. P. is grateful for an
Alexander von Humboldt Fellowship.
(e) Winterfeld, G. A.; Schmidt, R. R. Angew. Chem. Int. Ed.
2001, 40, 2654; Angew. Chem. 2001, 113, 2718. (f) Das, J.;
Schmidt, R. R. Eur. J. Org. Chem. 1998, 1609; and
references therein.
(8) General Procedure for the Michael-Type Addition:
To a solution of anomeric O-unprotected sugar (0.16 mmol)
in toluene (1 mL), t-BuOK (0.16 mmol) was added at 0 °C.
After 10 min, a solution of 1 (0.19 mmol) in toluene–n-
heptane mixture (1:2, 3 mL) was added to it. The reaction
mixture was stirred at the same temperature for the specific
period of time given in Table 1. Few drops of HOAc were
added to quench the reaction. It was taken in EtOAc, washed
with H2O, and sat. brine, dried over anhyd MgSO4, and
concentrated. Purification of the crude residue by
References
(1) (a) Haines, A. H. Carbohydr. Res. 2003, 338, 813.
(b) Wang, W.; Kong, F. Tetrahedron Lett. 1990, 40, 1361.
(c) Nicolaou, K. C.; van Delft, F. L.; Conley, S. R.; Mitchell,
J. J.; Jin, Z.; Rodríguez, R. M. J. Am. Chem. Soc. 1997, 119,
9057. (d) Hiruma, K.; Kajimoto, T.; Weitz-Schmidt, G.;
Ollmann, I.; Wong, C.-H. J. Am. Chem. Soc. 1996, 118,
9265.
(2) (a) Dolak, L. A.; Castle, T. M.; Laborde, A. L. J. Antibiot.
1980, 33, 690. (b) Naganawa, H.; Usui, N.; Takita, T.;
Hamada, M.; Maeda, K.; Umezawa, H. J. Antibiot. 1974, 27,
145. (c) Hooper, I. R. Aminoglycoside Antibiotics; Springer-
Verlag: New York, 1982. (d) Haddad, J.; Kotra, L. P.;
Mobashery, S. In Glycochemistry Principles, Synthesis and
Applications; Wang, P. G.; Bertozzi, C. R., Eds.; Marcel
Dekker: New York, 2001, 307.
(3) (a) Karpiesiuk, W.; Banaszek, A. J. Carbohydr. Chem. 1990,
9, 909. (b) Paulsen, H.; Sumfleth, B. Chem. Ber. 1979, 112,
3203. (c) Koto, S.; Inada, S.; Zeu, S. Bull. Chem. Soc. Jpn.
1981, 54, 2728. (d) Baer, H. H.; Siemsen, L. Carbohydr.
Res. 1986, 146, 63. (e) Hui, Y.; Chang, C.-W. T. Org. Lett.
2002, 4, 2245. (f) Bassily, R. W.; El-Sokkary, R. I.;
Silwanis, B. A.; Nematalla, A. S.; Nahed, M. A. Carbohydr.
Res. 1993, 239, 197. (g) Křen, V.; Rajnochová, E.;
Huňková, Z.; Dvořáková, J.; Sedmera, P. Tetrahedron Lett.
1998, 39, 9777.
chromatography on silica gel afforded the 1,1-linked
oligosaccharide. Selected 1H NMR data (250 MHz, CDCl3):
Compound 2a: d = 5.58 (J1,2 = 4.3 Hz, 1-Ha), 5.25 (J1,2 = 3.7
Hz, 1-Hb). Compound 2b: d = 5.50 (J1,2 = 4.1 Hz, 1-Ha), 4.56
(J1,2 = 8.3 Hz, 1-Hb). Compound 3a: d = 5.56 (J1,2 = 4.2 Hz,
1-Ha), 5.25 (J1,2 = 3.9 Hz, 1-Hb). Compound 3b: d = 5.49
(J1,2 = 4.2 Hz, 1-Ha), 4.60 (J1,2 = 8.1 Hz, 1-Hb). Compound
4a: d = 5.55 (J1,2 = 4.1 Hz, 1-Ha), 5.16 (J1,2 = 3.8 Hz, 1-Hb),
5.36 (J1,2 = 3.3 Hz, 1-Hc). Compound 4b: d = (J1,2 = 4.0 Hz,
1-Ha), 4.63 (J1,2 = 8.1 Hz, 1-Hb), 5.41 (J1,2 = 3.8 Hz, 1-Hc).
Compound 5a: d = 5.63 (J1,2 = 4.2 Hz, 1-Ha), 5.11 (J1,2 = 1.1
Hz, 1-Hb). Compound 6a: d = 5.60 (J1,2 = 4.2 Hz, 1-Ha), 5.21
(J1,2 = 3.9 Hz, 1-Hb). Compound 6b: d = 5.61 (J1,2 = 4.1 Hz,
1-Ha), 4.42 (J1,2 = 8.2 Hz, 1-Hb). Compound 7a: d = 5.63
(J1,2 = 4.1 Hz, 1-Ha), 5.41 (J1,2 = 4.1 Hz, 1-Hb). Compound
7b: d = 5.34 (J1,2 = 4.0 Hz, 1-Ha), 5.35 (J1,2 = 8.7 Hz, 1-Hb).
Compound 8a: d = 5.50 (J1,2 = 4.1 Hz, 1-Ha), 5.01 (J1,2 = 3.6
Hz, 1-Hb), 4.36 (J1,2 = 8.3 Hz, 1-Hc). Compound 8b: d = 5.29
(J1,2 = 4.1 Hz, 1-Ha), 5.08 (J1,2 = 8.2, 1-Hb), 4.51 (J1,2 = 8.0
Hz, 1-Hc). Compound 9a: d = 5.23 (J1,2 = 3.0 Hz, 1-Ha), 5.32
(J1,2 = 3.5 Hz, 1-Hb).
(9) (a) Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25,
212; Angew. Chem. 1986, 98, 213. (b) Schmidt, R. R.;
Klotz, W. Synlett 1991, 168. (c) Lubineau, A.; Escher, S.;
Alais, J.; Bonnaffé, D. Tetrahedron Lett. 1997, 38, 4087.
Synlett 2005, No. 1, 134–138 © Thieme Stuttgart · New York