8
T. K. Chakraborty, G. Sudhakar / Tetrahedron: Asymmetry 16 (2005) 7–9
OH
Br
O
Bn2N
O
5
1. H2, Pd(OH)2-C, MeOH
Bn2N
CHO
OH
Br
4
O
R
O
R
3
2. Boc2O, Et3N, MeOH
85-92% (ref.10)
n-BuLi, THF
78-93%
5
OH
1. TrisCl, Py, CH2Cl2
BocHN
CSA, MeOH
85-95%
BocHN
O
OH
2. K2CO3, MeOH
R
O
R
OH
72-88%
6
7
1. SO3-py, Et3N, DMSO, CH2Cl2
BocHN
BocHN
OH
CO2Me
O
O
2. NaClO2, Na H PO4,
2
R
R
2-methyl-2-butene, tBuOH
8
2
3. CH2N2, Et2O
84-88%
[a: R = Me; b: R = CH2Ph; c: R = CHMe2; d: R = CH2OBn]
Scheme 1.
4. (a) Reetz, M. T. Chem. Rev. 1999, 99, 1121–1162; (b)
Reetz, M. T.; Drewes, M. W.; Schwickardi, R. Org. Synth.
1998, 76, 110–115.
5. (a) Chakraborty, T. K.; Dutta, S. Synth. Commun. 1997,
27, 4163–4172; (b) OÕBrien, P.; Warren, S. Tetrahedron
Lett. 1996, 37, 4271–4274; (c) Beaulieu, P.; Wernic, D.
J. Org. Chem. 1996, 61, 3635–3645.
primary hydroxyl group of 8a into an acid that was
treated with an excess of diazomethane in ether to get
the final product 2a12 in 84% yield.
Similarly, starting with N,N-dibenzylphenylalaninal 3b,
N,N-dibenzylvalinal 3c and N,N,O-tribenzylserinal 3d
compounds 2b, 2c and 2d, respectively, were synthesized
following Scheme 1.12
6. Gung, B. W.; Kumi, G. J. Org. Chem. 2003, 68, 5956–
5960.
7. (a) Schmid, C. R.; Bryant, J. D. J. Org. Chem. 1991, 56,
4056–4058; (b) Schmid, C. R.; Bryant, J. D.; Dowlatzedah,
M.; Phillips, J. L.; Prather, D. E.; Schantz, R. D.; Sear, N.
L.; Vianco, C. S. J. Org. Chem. 1991, 56, 4056–4058.
Acknowledgements
We thank CSIR, New Delhi for research fellowship
(G.S.) and DST, New Delhi for financial assistance.
8. All new compounds were characterized by IR, 1H and 13
NMR and mass spectroscopic studies.
C
9. For recent reports on the diastereoselective nucleophilic
addition to N,N-dibenzylaminoaldehydes see: (a) Fuku-
zawa, S.; Miura, M.; Saitoh, T. J. Org. Chem. 2003, 68,
2042–2044; (b) Goff, N. L. C.; Audin, P.; Paris, J.; Cazes,
B. Tetrahedron Lett. 2002, 43, 6325–6328.
10. During the hydrogenation of 5d, selective deprotection of
NBn2 could be achieved by carefully monitoring the
reaction and allowing it to run for a shorter period of time
than other substrates. The rate of deprotection of NBn2
was found to be much faster than that of OBn group
giving a modest 58% yield of 6d.
References
1. For reviews on sugar amino acids see: (a) Chakraborty, T.
K.; Srinivasu, P.; Tapadar, S.; Mohan, B. K. J. Chem. Sci.
2004, 116, 187–207; (b) Gruner, S. A. W.; Locardi, E.;
Lohof, E.; Kessler, H. Chem. Rev. 2002, 102, 491–514; (c)
Chakraborty, T. K.; Ghosh, S.; Jayaprakash, S. Curr.
Med. Chem. 2002, 9, 421–435; (d) Chakraborty, T. K.;
Jayaprakash, S.; Ghosh, S. Comb. Chem. High Throughput
Screening 2002, 5, 373–387; (e) Schweizer, F. Angew.
Chem., Int. Ed. 2002, 41, 230–253; (f) Peri, F.; Cipolla, L.;
Forni, E.; La Ferla, B.; Nicotra, F. Chemtracts Org.
Chem. 2001, 14, 481–499.
2. (a) Raunkjær, M.; El Oualid, F.; van der Marel, G. A.;
Overkleeft, H. S.; Overhand, M. Org. Lett. 2004, 6, 3167–
3170; (b) Mazur, A. W.; Kulesza, A.; Mishra, R. A.;
Cross-Doersen, D.; Russell, A. F.; Ebetino, F. H. Bioorg.
Med. Chem. 2003, 11, 3053–3063; (c) Kulesza, A.; Ebetino,
F. H.; Mishra, R. K.; Cross-Doersen, D.; Mazur, A. W.
Org. Lett. 2003, 5, 1163–1166.
11. Maezaki, N.; Kojima, N.; Asai, M.; Tominaga, H.;
Tanaka, T. Org. Lett. 2002, 4, 2977–2980.
12. Selected physical data of 2a (R = Me): Rf = 0.4 (silica gel,
27
30% EtOAc in petroleum ether); ½aꢁD = ꢀ9.1 (c 0.98,
1
CHCl3); IR (neat) mmax 3438, 3385, 1700 cmꢀ1; H NMR
(CDCl3, 200 MHz): d 4.67 (d, J = 6.6 Hz, 1H, NH) 4.54
(dd, J = 5.2, 8.1 Hz, 1H, C2H), 4.15 (m, 1H, C5H), 3.74 (s,
3H, CO2Me), 3.71 (m, 1H, C6H), 2.28 (m, 1H), 2.03 (m,
1H), 1.72 (m, 2H), 1.44 (s, 9H, Boc), 1.14 (d, J = 6.6 Hz,
3H, CH3); 13C (CDCl3, 75 MHz): d 173.56, 155.35, 83.48,
79.22, 76.57, 51.92, 49.27, 29.84, 28.34, 27.43, 16.04; MS
(LSIMS) m/z (%) 274 (24) [M+H]+. Selected physical data
of 2b (R = Bn): Rf = 0.45 (silica gel, 30% EtOAc in
3. (a) Vescovi, A.; Knoll, A.; Koert, U. Org. Biomol. Chem.
2003, 2983–2997; (b) Schrey, A.; Vescovi, A.; Knoll, A.;
Rickert, C.; Koert, U. Angew. Chem., Int. Ed. 2000, 39,
900–902; (c) Schrey, A.; Osterkamp, F.; Straudi, A.;
Rickert, C.; Wagner, H.; Koert, U.; Herrschaft, B.;
Harms, K. Eur. J. Org. Chem. 1999, 2977–2990.
27
petroleum ether); ½aꢁD = +4.6 (c 0.98, CHCl3); IR (KBr)
mmax 3369, 1831, 1669, 1508 cmꢀ1 1H NMR (CDCl3
;
200 MHz): d 7.26 (m, 5H, Ph), 4.6 (m, 1H), 4.38 (br s, 1H,