ꢀ
M. Bardajı et al. / Inorganica Chimica Acta 358 (2005) 1365–1372
1371
resulting solution was stirred for 1 h, concentrated to
1
[2] H. Schmidbaur, Gold Bull. 33 (2000) 3.
[3] B. Ahrens, S. Friedrichs, R. Herbst-Irmer, P.G. Jones, Eur. J.
Inorg. Chem. (2000) 2017, and references therein.
[4] (a) W.J. Hunks, M.C. Jennings, R.J. Puddephatt, Inorg. Chem. 41
(2002) 4590;
ca. 3 mL and precipitated with hexane. Yield: 90%. H
NMR (300 MHz, CDCl3, 21 °C): d 7.12–7.71 (m, Ph);
31P{1H} NMR (121 MHz, CDCl3, 21 °C): d )7.3 (br).
31P{1H} NMR ()50 °C): d )5.55 (s). Found: C, 56.65;
H, 3.65%. C78H60Au2Cl2P6 requires: C, 56.85; H, 3.65%.
(b) B.-C. Tzeng, A. Schier, H. Schmidbaur, Inorg. Chem. 38
(1999) 3978;
(c) C. Hollatz, A. Schier, H. Schmidbaur, J. Am. Chem. Soc. 119
(1997) 8115.
4.6. Crystal structure determinations
[5] A. Laguna, in: H. Schmidbaur (Ed.), Gold: Progress in Chemistry,
Biochemistry and Technology, Wiley, Chichester, 1999, pp. 349–
427.
Crystal data and refinement details are given in
Table 6. Single crystals of [(AuCl)2(l-dppa)],
[6] (a) Z. Qin, M.C. Jennings, R.J. Puddephatt, Chem. Eur. J. 8
(2002) 723;
[(AuC6F5)2(l-dppa)],
[(Au(SC6F5))2(l-dppa)]
and
(b) C.P. McArdle, M.J. Irwin, M.C. Jennings, J.J. Vittal, R.J.
Puddephatt, Chem. Eur. J. 8 (2002) 735;
[(AuCl)2(l-dppa)3] were obtained by slow diffusion at
)18 °C, of hexane/ethanol into a dichloromethane/
chloroform solution, of diethyl ether into a dichlorom-
ethane solution, of petroleum ether into a dichlorome-
(c) M.C. Brandys, R.J. Puddephatt, Chem. Commun. (2001) 1280;
(d) W.J. Hunks, J. Lapierre, H.A. Jenkins, R.J. Puddephatt, J.
Chem. Soc., Dalton Trans. (2002) 2885;
(e) M.C. Brandys, R.J. Puddephatt, J. Am. Chem. Soc. 123 (2001)
4839;
thane/chloroform solution, of hexane into
a
dichloromethane solution, respectively. The structures
were refined anisotropically on F2 (program SHELXL 97)
[28] using a system of restraints (to light-atom U values
and local ring symmetry). All non-hydrogen atoms were
refined anisotropically. Hydrogen atoms were included
using a riding model. Special features of refinement: the
chloroform molecule of 5 is disordered over an inversion
centre. The water molecule of 6 (O(1), H(1) and H(2))
was located from difference Fourier maps. Oxygen atom
was refined with anisotropic displacement parameters
and hydrogen atoms were refined with isotropic dis-
placement parameters 1.2 times the isotropic equivalent
of oxygen atom.
(f) J.H.K. Yip, J. Prabhavathy, Angew. Chem. Int. Ed. 40 (2001)
2159;
(g) V.J. Catalano, M.A. Malwitz, S.J. Horner, J. Vasquez, Inorg.
Chem. 42 (2003) 2141, and its reference 4;
(h) R.-H. Uang, C.-K. Chan, S.-M. Peng, C.-M. Che, J. Chem.
Soc., Chem. Commun. (1994) 2561.
[7] I.D. Salter, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.),
Comprehensive Organometallic Chemistry, vol. 10, Pergamon,
Oxford, 1995, pp. 255–317.
[8] (a) A. Amoroso, B. Johnson, J. Lewis, A. Massey, P. Raithby, W.
Wong, J. Organomet. Chem. 440 (1992) 219–231;
(b) C. Housecroft, A. Rheingold, A. Waller, G. Yap, J. Organo-
met. Chem. 565 (1999) 105;
(c) J. Galsworthy, C. Housecroft, A. Rheingold, J. Chem. Soc.,
Dalton Trans. (1995) 2639.
[9] A.J. Carty, A. Efraty, Inorg. Chem. 8 (1969) 543.
ꢀ
[10] M. Bardajı, P.G. Jones, A. Laguna, Eur. J. Inorg. Chem. (1998)
989.
[11] M. Bardajı, P.G. Jones, A. Laguna, J. Chem. Soc., Dalton Trans.
5. Supplementary material
ꢀ
(2002) 3624.
[12] P.G. Jones, C. Thone, Acta Crystallogr., Sect. C 48 (1992) 1312.
€
Complete X-ray data (excluding structure factors) for
complexes 1, 2, 5 and 6 have been deposited with the
Cambridge Crystallographic Data Centre as supple-
mentary publication nos. CCDC-231716-231719. These
Crystallographic Data Centre, 12 Union Road, Cam-
bridge CB2 1EZ, UK; fax: (internat.) +44-1223-336033;
[13] J.W.A. Van der Velden, J.J. Bour, J.J. Steggerda, P.T. Beurskens,
M. Roseboom, J.H. Nordik, Inorg. Chem. 21 (1982) 4321.
[14] H. Schmidbaur, P. Bissinger, J. Lachamann, O. Steigelmann, Z.
Naturfosch, Teil B 47 (1992) 1711.
[15] P.M. Van Calcar, M.M. Olmstead, A.L. Balch, Inorg. Chem. 36
(1997) 5231.
[16] (a) S. Onaka, Y. Katsukawa, M. Yamashita, Chem. Lett. (1998)
525;
(b) S. Onaka, Y. Katsukawa, M. Shiotsuka, O. Kanegawa,
M. Yamashita, Inorg. Chim. Acta 312 (2001) 100.
[17] E. Lozano, M. Nieuwenhuyzen, S.L. James, Chem. Eur. J. 7
(2001) 2644.
[18] M. Semmelmann, D. Fenske, J.F. Corrigan, J. Chem. Soc.,
Dalton Trans. (1998) 2541.
Acknowledgements
[19] P.G. Jones, G.M. Sheldrick, J.A. Muir, M.M. Muir, L.B. Pulgar,
J. Chem. Soc., Dalton Trans. (1982) 2123.
ꢀ
ꢀ
We thank the Direccion General de Investigacion
ꢀ
ꢀ
Cientıfica y Tecnica (project BQU2001-2409-C02-01)
and the Fonds der Chemischen Industrie for financial
support.
[20] C.B. Dieleman, D. Matt, A. Harriman, Eur. J. Inorg. Chem.
(2000) 831.
[21] C. King, J.-C. Wang, M.N.I. Khan, J.P. Fackler Jr., Inorg. Chem.
28 (1989) 2145.
[22] (a) R. Narayanaswamy, M.A. Young, E. Parkhurst, M. Ouellette,
M.E. Kerr, D.M. Ho, R.C. Elder, A.E. Bruce, M.R.M. Bruce,
Inorg. Chem. 32 (1993) 2506;
References
(b) V.W.W. Yam, E.C.C. Cheng, N. Zhu, Angew. Chem. Int. Ed.
40 (2001) 1763.
[1] M.C. Gimeno, A. Laguna, Chem. Rev. 97 (1997) 511.