heteroaromatic compounds has also been reported using
chemical agents7 and photo- or electrochemical operations
(method B).8 The latter approach is believed to be desirable
in nature by not requiring any functionality, but the utility
has usually been limited to practical applications perhaps
because of problems concerning the cyanation reagents. All
reported cyanation procedures need the highly electrophilic
cyano cation equivalent (+CN) as cyanation sources, which
are relatively unstable and difficult to prepare and handle
and even in some cases possess reactivity too high to allow
for selective control of the reactions. Therefore, new
methodologies and reagents for enabling the direct cyanation
have been strongly desired.
(PIFA)-mediated reaction that allows the direct oxidative
conversion of a wide range of heteroaromatic compounds
into cyanides using trimethylsilyl cyanide at room temper-
ature.
We first examined the cyanation of pyrrole 1a by PIFA
in (CF3)2CHOH or a combination of PIFA and BF3‚Et2O in
dichloromethane at ambient temperature, which did not give
any cyanation product under such conditions but instead
afforded mainly oxidative biaryl coupling products (Table
1, entry 1).11 This result shows the high nucleophicity of
Table 1. Direct Cyanation of N-Protected Pyrroles
Recently, hypervalent iodine(III) reagents have been
recongnized as useful synthetic tools due to their low toxicity,
ready availability, and ease of handling.9 As a continuation
of our study on hypervalent iodine chemistry, we have
previously reported the hypervalent iodine(III)-induced mild
and efficient direct nucleophilic substitutions of phenyl
ethers10 and alkylarenes10e in the presence of various nu-
-
cleophiles such as SCN,10a -SAr,10a,b -OAc, â-dicarbonyl
entry
R
yield of 2 (%)a
10c-e
compounds,10d and -N3
(Scheme 2). These results
1
2
3
4
5b
H (1a)
Boc (1b)
Me (1c)
Ts (1d)
(1d)
trace
trace
20 (2c)
59 (2d)
83
Scheme 2
a Isolated yields. b Performed with 2 equiv of PIFA and 4 equiv of
BF3‚Et2O.
the pyrrole ring itself. After a number of unsuccessful
attempts, we finally found that the protecting group of the
pyrrole nitrogen atom plays a crucial role (entries 2-4).
Thus, N-tosyl pyrrole 1d was selectively converted to
2-cyano-N-tosyl pyrrole 2d in 83% yield by the combination
of PIFA and BF3‚Et2O in CH2Cl2 at room temperature (entry
5). The regiochemistry of the cyanation products was
encouraged us to examine the cyanide anion (-CN) as a
stable nucleophilic cyanide source for direct oxidative
cyanation. We now report a phenyliodine bis(trifluoroacetate)
1
determined from the H NMR measurement or by leading
the cyanation products to the known compounds which have
been reported before. Trimethylsilyl cyanide produced the
best result as a cyanide source among those examined,12
probably due to its good solubility in organic solvents. Other
(4) (a) Takagi, K.; Okamoto, T.; Sakakibara, Y.; Oka, S. Chem. Lett.
1973, 471. (b) Sekiya, A.; Ishikawa, N. Chem. Lett. 1975, 277. For reviews,
see: (c) Sundermeier, M.; Zapf, A.; Beller, M. Eur. J. Inorg. Chem. 2003,
3513. (d) Grushin, V. V.; Alper, H. Chem. ReV. 1994, 94, 1047. (e) Ellis,
G. P.; Romney-Alexander, A. F. Chem. ReV. 1987, 87, 779.
(5) (a) Sato, N.; Yue, Q. Tetrahedron 2003, 59, 5831. (b) Sato, N.
Tetrahedron Lett. 2002, 43, 6403. (c) Wu, Y.-q.; Limburg, D. C.; Wilkinson,
D. E.; Hamilton, G. S. Org. Lett. 2000, 2, 795. (d) Hughes, T. V.; Cava,
M. P. J. Org. Chem. 1999, 64, 313. (e) Klement, I.; Lennick, K.; Tucker,
C. E.; Knochel, P. Tetrahedron Lett. 1993, 34, 4623. (f) Foulger, N. J.;
Wakefield, B. J. Tetrahedron Lett. 1972, 13, 4169. (g) Van Leusen, A. M.;
Jagt, J. C. Tetrahedron Lett. 1970, 11, 967.
(9) Recent reviews see: (a) Stang, P. J.; Zhdankin, V. V. Chem. ReV.
1996, 96, 1123. (b) Kita, Y.; Takada, T.; Tohma, H. Pure Appl. Chem.
1996, 68, 627. (c) Varvoglis, A. HyperValent Iodine in Organic Synthesis;
Academic Press: San Diego, 1997. (d) Kitamura, T.; Fujiwara, Y. Org.
Prep. Proc. Int. 1997, 29, 409. (e) Ochiai, M. In Chemistry in HyperValent
Compounds; Akiba, K., Ed.; Wiley-VCH: New York, 1999; Chapter 12.
(f) Wirth, T.; Hirt, U. H. Synthesis 1999, 1271. (g) Zhdankin, V. V.; Stang,
P. J. Chem. ReV. 2002, 102, 2523. (h) HyperValent Iodine Chemistry; Wirth,
T., Ed.; Springer-Verlag: Berlin, 2003.
(6) Gossauer, A. Die Chemie der Pyrrole; Springer: New York, 1974;
SS 326. (b) Jones, R. A.; Bean, G. P. In The Chemistry of Pyrroles. Organic
Chemistry. A Series of Monographs; Blomquist, A. T., Wasserman, H. H.,
Eds.; Academic Press: New York, 1977; pp 129.
(7) Chlorosulfonyl isocyanate: (a) Graf, R. Chem. Ber. 1956, 89, 1071.
(b) Lohaus, G. Chem. Ber. 1967, 100, 2719. Isocyanatophosphoric acid
dichloride: (c) Kirsanov, A. V. Zh. Obshch. Chem. 1954, 24, 1033. (d)
Smaliy, R. V.; Chaikovskaya, A. A.; Pinchuk, A. M.; Tolmachev, A. A.
Synthesis 2002, 2416. (Ethoxycarbonylimino)triphenylphosphorane: (e)
von der Bru¨ck, D.; Tapia, A.; Riechel, R.; Plieninger, H. Angew. Chem.
1968, 80, 397. Triphenyphosphine-thiocyanogen: (f) Tamura, Y.; Ka-
wasaki, M.; Adachi, M.; Tanio, M.; Kita, Y. Tetrahedron Lett. 1977, 18,
4417. (g) Tamura, Y.; Adachi, M.; Kawasaki, T.; Yasuda, H.; Kita, Y. J.
Chem. Soc., Perkin Trans. 1 1980, 1132.
(10) (a) Kita, Y.; Takada, T.; Mihara, S.; Whelen, B. A.; Tohma, H. J.
Org. Chem. 1995, 60, 7144. (b) Kita, Y.; Takada, T.; Mihara, S.; Tohma,
H. Synlett 1995, 211. (c) Kita, Y.; Tohma, H.; Takada, T.; Mitoh, S.; Fujita,
S.; Gyoten, M. Synlett 1994, 427. (d) Kita, Y.; Tohma, H.; Hatanaka, K.;
Takada, T.; Fujita, S.; Mitoh, S.; Sakurai, H.; Oka, S. J. Am. Chem. Soc.
1994, 116, 3684. (e) Kita, Y.; Tohma, H.; Inagaki, M.; Hatanaka, K.; Yakura,
T. Tetrahedron Lett. 1991, 32, 4321.
(11) (a) Tohma, H.; Iwata, M.; Maegawa, T.; Kiyono, Y.; Maruyama,
A.; Kita, Y. Org. Biomol. Chem. 2003, 1, 1647. (b) Tohma, H.; Iwata, M.;
Maegawa, T.; Kita, Y. Tetrahedron Lett. 2002, 43, 9241. (c) Tohma, H.;
Morioka, H.; Takizawa, S.; Arisawa, M.; Kita, Y. Tetrahedron 2001, 57,
345 and references therein.
(8) (a) Yoshida, K. J. Am. Chem. Soc. 1977, 99, 6111. (b) Yoshida, K.
J. Chem. Soc. Chem. Commun. 1978, 1108.
538
Org. Lett., Vol. 7, No. 4, 2005