Macromolecules, Vol. 38, No. 4, 2005
Zn Porphyrin Linked Poly(phenyleneethynylene) 1189
(3) Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist,
T.; Li, W.; Lin, Y.-Y.; Dodabalapur, A. Nature (London) 2000,
404, 478-481.
(4) Granstro¨m, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson,
M. R.; Fiend, R. H. Nature (London) 1998, 395, 257-260.
(5) Krebs, F. C.; Hagemann, O.; Spanggaard, H. J. Org. Chem.
2003, 68, 2463-2466.
(6) Li, B.; Li, J.; Fu, Y.; Bo, Z. J. Am. Chem. Soc.. 2004, 126,
3430-3431.
(7) Wong, M. S.; Zhong, H. L.; Shek, M. F.; Chow, K. H.; Tao,
Y.; D’Iorio, M. J. Mater. Chem. 2000, 10, 1805-1810.
(8) Gill, R. E.; van Hutten, P. F.; Meetsma, A.; Hadziioannou,
G. Chem. Mater. 1996, 8, 1341-1346.
(9) Yao, Y.; Tour, J. M. J. Org. Chem. 1999, 64, 1968-1971.
(10) Pelter, A.; Jenkins, I.; Jones, D. E. Tetrahedron 1997, 53,
10357-10400.
exponential functions to obtain a reasonable fit in
degassed chloroform: 259 ps (86%) and 1.6 ps (14%).
In the spin-coated film the measured lifetime of the N
domain is significantly larger: 1.4 ns (53%) and 2.7 ns
(47%). This could be caused by the hampering of some
of the deactivation routes that are effective in solution.
A side effect is that the exciton has more time to be
transferred to a porphyrin unit, and this could be one
of the reasons why more efficient energy transfer is
observed. Interestingly, the fluorescence lifetime of the
porphyrin unit was significantly shorter in the solid
state than in solution. The lifetime decay was complex,
and a good fit could not be obtained. This is not
unexpected since a number of interactions and different
local environments are present in the solid NPN B
matrix. The average lifetime was approximately 300 ps.
(11) Plater, M. J.; Aiken, S.; Bourhill, G. Tetrahedron 2002, 58,
2405-2413.
(12) Ware, R. W.; Rothman, W. Chem. Phys. Lett. 1976, 39, 449-
453.
(13) Ziener, U.; Godt, A. J. Org. Chem. 1997, 62, 6137-6142. (b)
Hortholary, C.; Coudret, C. J. Org. Chem. 2003, 68, 2167-
2174. (c) Sabourin, E. T.; Onopchenko, A. J. Org. Chem. 1983,
48, 5135-5137. (d) Kukula, H.; Veit, S.; Godt, A. Eur. J. Org.
Chem. 1999, 277-286. (e) Li, J.; Pang, Y. Synth. Met. 2003,
10383-10389. (f) Jones, L.; Schumm, J. S.; Tour, J. M. J.
Org. Chem. 1997, 62, 1388-1410. (g) Che, C.-M.; Yu, W.-Y.;
Chan, P.-M.; Cheng, W.-C.; Peng, S.-M.; Lau, K.-C.; Li, W.-
K. J. Am. Chem. Soc. 2000, 122, 11380-11392.
(14) Brandsma, L.; Vasilevsky, S. F.; Verkruijsse, H. D. Applica-
tion of Transition Metal Catalysts in Organic Synthesis;
Springer-Verlag: Berlin, 1998.
Conclusions
We have presented the synthesis of a new zinc
porphyrin linked conjugated polymer. We experienced
problems in controlling the nature of polymer product
and found that it was a result of many factors: oxidative
dimerization and cross-linking of the ethynylene groups
and palladium remnants from the catalyst. We thor-
oughly studied products and the reaction by two differ-
ent synthetic approaches and demonstrated that a
polymer product with one porphyrin molecule inserted
in each polymer chain could be obtained by choosing the
right synthetic approach. We separated the polymer
material into fractions using preparative SEC and
studied both the cross-linking of the individual fractions
and purified them further to finally perform thorough
photophysical studies. We showed the light-harvesting
properties of the three-domain structure as a function
of the chain length of the Nn polymer. This new zinc
porphyrin linked homopolymer shows a very effective
energy transfer from the polymer to the porphyrin in
solid state. Finally, we have identified some problems
concerning remnants of Pd from the catalyst in the
polymer product, and devise a procedure for the removal
of the Pd remnants such that standard electroactive
devices could be constructed.
(15) Solomin, V. A.; Heitz, W. Macromol. Chem. Phys. 1994, 195,
303-314.
(16) Klo¨pping, H. L.; van Der Kerk, G. J. M. Recueil 1951, 70,
917-939.
(17) Eaborn, C.; Thompson, A. R.; Walton, D. R. M. J. Chem. Soc.
1967, 1364-1366.
(18) (a) Heitz, W. Pure Appl. Chem. 1995, 67, 1951-1964. (b)
Kukula, H.; Veit, S.; Godt, A. Eur. J. Org. Chem. 1999, 277-
286. (c) Li.; Y.; Pang, Y. Synth. Met. 2003, 10383-10389. (d)
Gevorgyan, V.; Radhakrishnan, U.; Takeda, A.; Rubina, M.;
Rubin, M.; Yamamoto, Y. J. Org. Chem. 2001, 66, 2835-2841.
(19) Heitz, W. Polym. Prepr. 1991, 32, 327-328.
(20) Trumbo, D. L.; Marvel, C. S. J. Polym. Sci., Part A: Polym.
Chem. 1987, 25, 1027-1034.
(21) Tomizaki, K. Y.; Yu, L. H.; Wei, L. Y.; Bocian, D. F.; Lindsey,
J. S. J. Org. Chem. 2003, 68, 8199-8207.
(22) Sonogashira, K. In Metal-Catalyzed Cross-Coupling Reac-
tions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH Verlag:
Weinheim, 1998; Chapter 5.
(23) Jones II, L. R.; Schumm, J. S.; Tour, J. M. J. Org. Chem.
1997, 62, 1388-1410.
(24) Bre´das, J. L.; Silbey, R.; Boudreaux, D. S.; Chance, R. R. J.
Am. Chem. Soc. 1983, 105, 6555-6559.
(25) (a) Krebs, F. C.; Nyberg, R. B.; Jørgensen, M. Chem. Mater.
2004, 16, 1313-1318. (b) Nielsen, K. T.; Bechgaard, K.;
Krebs, F. C. Macromolecules, in press.
(26) Jones, L.; Schumm, J. S.; Tour, J. M. J. Org. Chem. 1997,
62, 1388-1410.
(27) Van Broekhoven, J.; Adrianus, M. European Patent Applica-
tion 0283092 A1, 1988.
(28) Briscoe, G. B.; Humphries, S. Talanta 1969, 16, 1403-1419.
(29) Nielsen, K. T.; Spanggaard, H.; Krebs, F. C. Displays, in
press.
(30) Reppe, W.; Schlicthing, O.; Klager, K.; Toepel, T. Justus
Liebigs Ann. Chem. 1948, 560, 1-7.
(31) Gevorgyan, V.; Takeda, A.; Yamamoto, Y. J. Am. Chem. Soc.
1997, 119, 11313-11314.
(32) Gevorgyan, V.; Radhakrishnan, U.; Takeda, A.; Rubina, M.;
Rubin, M.; Yamamoto, Y. J. Org. Chem. 2001, 66, 2835-2841.
(33) Krebs, F. C.; Spanggaard, H.; Rozlosnik, N.; Larsen, N. B.;
Jørgensen, M. Langmuir 2003, 19, 7873-7880.
Acknowledgment. The Danish Technical Research
Council (STVF) supported this work. We express sincere
gratitude to Mette P. Jeppsen, Ole Hagemann, and Jan
Alstrup for technical assistance.
Supporting Information Available: General analytical
techniques, synthetic procedures, characterization, UV-vis,
and fluorescence spectra of the polymer and the DDC-treated
polymer, and electroactive device preparation. This material
is available free of charge via the Internet at http://
pubs.acs.org.
References and Notes
(1) Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.;
Shirakawa, H.; Louis, E. J.; Gau, S. C.; Macdiarmid, A. G.
Phys. Rev. Lett. 1977, 39, 1098-1101.
(2) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks,
R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B.
Nature (London) 1990, 347, 539-541.
MA048489U