Communication
ChemComm
˜
´
´
4 D. Pena, A. Cobas, D. Perez and E. Guitian, Synthesis, 2002,
1454–1458.
¨
5 (a) H. Bock, S. Nick, C. Nather and K. Ruppert, Z. Naturforsch., 1995,
50, 595–604; (b) H. M. Duong, M. Bendikov, D. Steiger, Q. Zhang,
G. Sonmez, J. Yamada and F. Wudl, Org. Lett., 2003, 5, 4433–4436;
ˇ
´
´
(c) N. Pavlicek, B. Schuler, S. Collazos, N. Moll, D. Perez, E. Guitian,
Scheme 4 Successful bisxylene formation from transient ortho-silylaryl
nonaflate 12b to form adduct 24 by in situ Diels–Alder reaction. See ESI,† S12.
˜
G. Meyer, D. Pena and L. Gross, Nat. Chem., 2015, 7, 623–628;
(d) I. Pozo, D. Pena, E. Guitıan and D. Perez, Chem. Commun., 2020,
˜
´
´
56, 12853–12856.
6 (a) Y. Sato, T. Tamura and M. Mori, Angew. Chem., Int. Ed., 2004, 43,
(Fig. 3, middle). Here, the 30 minute reaction time allows E (10)
to undergo halogen-metal exchange to afford F but retro-Brook
to G (11) cannot complete; H can only form from O-silyl
exchanges. Unfortunately, after triflation and work-up (Phase
3), quinone KQ (23) predominated (Fig. 3, bottom, 41% isolated
yield); despite this, C,C0-disilylated K (12a) is detected in situ
and the oxidation product successfully confirms our assign-
ments. H was later isolated in 74% yield but attempts to
introduce the triflate only produced KQ (23, 56% yield). This
sensitivity of the triflates suggests this may be an inherent
limitation of functionalized bis-oSAT precursors. However,
transient o-silylaryl nonaflates such as 12b (putative structure,
accessed from air-stable H) are also aryne precursors9 and
pleasingly the subsequent Diels–Alder reaction of furan with
the bisaryne proceeded successfully in 13% yield (Scheme 4).
In summary, we have developed a quick and facile MM2/
Hu¨ckel modelling strategy to test the success of retro-Brook O-
to C-silyl transfer relevant to aryne precursor synthesis. A novel
application (13z) and an expected failure (15) were validated
experimentally. Next, a route towards 1,4-bisxylyne precursors
12a/b was developed with a retro-Brook step for just one
C-silylation. This is the first C,C0-disubstituted o-silylaryl sulfo-
nate bisbenzyne precursor: with appropriate substituents,
many previously elusive bisaryne precursors may now be
accessible.
´
2436–2440; (b) F. I. M. Idiris, C. E. Majeste, G. B. Craven and
C. R. Jones, Chem. Sci., 2018, 9, 2873–2878.
7 A. B. Smith and W.-S. Kim, Proc. Natl. Acad. Sci. U. S. A., 2011, 108,
6787–6792.
8 Selected examples: (a) R. Shintani, H. Otomo, K. Ota and T. Hayashi,
J. Am. Chem. Soc., 2012, 134, 7305–7308; (b) K. G. U. R.
Kumarasinghe, F. R. Fronczek, H. U. Valle and A. Sygula, Org. Lett.,
2016, 18, 3054–3057; (c) P. Asgari, U. S. Dakarapu, H. H. Nguyen and
J. Jeon, Tetrahedron, 2017, 73, 4052–4061; (d) X. Yang and G. C. Tsui,
Chem. Sci., 2018, 9, 8871–8875; (e) W. Xu, X.-D. Yang, X.-B. Fan,
X. Wang, C.-H. Tung, L.-Z. Wu and H. Cong, Angew. Chem., Int. Ed.,
2019, 58, 3943–3947; ( f ) Most recent of seven works: I. Pozo,
ˇ
´
˜
Z. Majzik, N. Pavlicek, M. Melle-Franco, E. Guitian, D. Pena,
´
L. Gross and D. Perez, J. Am. Chem. Soc., 2019, 141, 15488–15493.
9 T. Ikawa, S. Masuda, H. Nakajima and S. Akai, J. Org. Chem., 2017,
82, 4242–4253. See ESI† S5.
10 ChemOffice Professional, PerkinElmer Informatics, 2019.
11 (a) V. Singh, R. S. Verma, A. K. Khatana and B. Tiwari, J. Org. Chem.,
2019, 84, 14161–14167; (b) Y. Tsuchido, T. Ide, Y. Suzaki and
K. Osakada, Bull. Chem. Soc. Jpn., 2015, 88, 821–823; (c) H. Jiang,
Y. Zhang, W. Xiong, J. Cen, L. Wang, R. Cheng, C. Qi and W. Wu,
Org. Lett., 2019, 21, 345–349; (d) C.-H. Sun, Y. Lu, Q. Zhang, R. Lu, L.-
Q. Bao, M.-H. Shen and H.-D. Xu, Org. Biomol. Chem., 2017, 15,
4058–4063; (e) K. Nogi, T. Fujihara, J. Terao and Y. Tsuji, J. Org.
Chem., 2015, 80, 11618–11623; ( f ) C. Hall, J. L. Henderson,
G. Ernouf and M. F. Greaney, Chem. Commun., 2013, 49, 7602;
(g) Y. Zeng, L. Zhang, Y. Zhao, C. Ni, J. Zhao and J. Hu, J. Am. Chem.
Soc., 2013, 135, 2955–2958; (h) J. Pan, M. Su and S. L. Buchwald,
Angew. Chem., Int. Ed., 2011, 50, 8647–8651; (i) B. Lakshmi,
U. Wefelscheid and U. Kazmaier, Synlett, 2011, 345–348;
( j) J. George, J. S. Ward and M. S. Sherburn, Org. Lett., 2019, 21,
7529–7533; (k) T.-Y. Zhang, C. Liu, C. Chen, J.-X. Liu, H.-Y. Xiang,
W. Jiang, T.-M. Ding and S.-Y. Zhang, Org. Lett., 2018, 20, 220–223;
(l) T. Hosokawa, Y. Takahashi, T. Matsushima, S. Watanabe,
S. Kikkawa, I. Azumaya, A. Tsurusaki and K. Kamikawa,
J. Am. Chem. Soc., 2017, 139, 18512–18521; (m) T. Ikawa,
S. Masuda, A. Takagi and S. Akai, Chem. Sci., 2016, 7, 5206–5211;
(n) J. Shi, D. Qiu, J. Wang, H. Xu and Y. Li, J. Am. Chem. Soc., 2015,
137, 5670–5673.
We are grateful to the EPSRC (EP/M026221/1, CRJ) and
QMUL (teaching laboratory technician/teaching fellow posts
for EAN; studentship to AYRW) for financial support. We thank
the National Mass Spectrometry Facility at Swansea University.
Conflicts of interest
12 T. D. Sheppard, Org. Biomol. Chem., 2009, 7, 1043–1052.
˜
´
´
13 (a) D. Pena, D. Perez, E. Guitian and L. Castedo, J. Org. Chem., 2000,
65, 6944–6950; (b) M. Idris, C. Coburn, T. Fleetham, J. Milam-
Guerrero, P. I. Djurovich, S. R. Forrest and M. E. Thompson, Mater.
Horiz., 2019, 6, 1179–1186.
There are no conflicts to declare.
Notes and references
1 (a) H. H. Wenk, M. Winkler and W. Sander, Angew. Chem., Int. Ed.,
14 E. Clar, Polycyclic Hydrocarbons, Springer, Berlin, 1964.
15 C. A. Dornfeld, J. E. Callen and G. H. Coleman, Org. Synth., 1948, 28,
19–21. Bromine adds across the 9,10-bond prior to rearomatization
on heating.
16 (a) T. J. Barton and B. L. Groh, J. Am. Chem. Soc., 1985, 107,
7221–7222; (b) N. Shimizu, F. Shibata and Y. Tsuno, Bull. Chem.
Soc. Jpn., 1987, 60, 777–778; (c) L. Duhamel, J. Gralak and B. Ngono,
J. Organomet. Chem., 1989, 363, C4–C6; (d) L. Duhamel, J. Gralak and
A. Bouyanzer, Tetrahedron Lett., 1993, 34, 7745–7748; (e) L. Duhamel,
J. Gralak and B. Ngono, J. Organomet. Chem., 1994, 464,
C11–C13.
17 Y. Wang, A. D. Stretton, M. C. McConnell, P. A. Wood, S. Parsons,
J. B. Henry, A. R. Mount and T. H. Galow, J. Am. Chem. Soc., 2007,
129, 13193–13200.
18 (a) R. G. R. Bacon and S. C. Rennison, J. Chem. Soc. C, 1969, 312–315;
(b) S. Kobayashi, K. Kitamura, A. Miura, M. Fukuda, M. Kihara and
M. Azekawa, Chem. Pharm. Bull., 1972, 20, 694–699.
19 M. McKee, J. Haner, E. Carlson and W. Tam, Synthesis, 2014,
1518–1524.
´
˜
´
2003, 42, 502–528; (b) D. Perez, D. Pena and E. Guitian, Chem. – Eur.
J., 2013, 5981–6103; (c) S. S. Bhojgude, A. Bhunia and A. T. Biju, Acc.
Chem. Res., 2016, 49, 1658–1670; (d) J. Shi, Y. Li and Y. Li, Chem. Soc.
Rev., 2017, 46, 1707–1719; (e) T. Roy and A. T. Biju, Chem. Commun.,
2018, 54, 2580–2594; ( f ) D. B. Werz and A. T. Biju, Angew. Chem., Int.
Ed., 2019, 59, 3385–3398.
2 Recent cases: (a) A. V. Kelleghan, C. A. Busacca, M. Sarvestani,
I. Volchkov, J. M. Medina and N. K. Garg, Org. Lett., 2020, 22,
1665–1669; (b) J. Xu, S. Li, H. Wang, W. Xu and S. Tian, Chem.
Commun., 2017, 53, 1708–1711; (c) R. Fan, B. Liu, T. Zheng, K. Xu,
C. Tan, T. Zeng, S. Su and J. Tan, Chem. Commun., 2018, 54,
7081–7084; (d) H. Takikawa, A. Nishii, H. Takiguchi, H. Yagishita,
M. Tanaka, K. Hirano, M. Uchiyama, K. Ohmori and K. Suzuki,
Angew. Chem., Int. Ed., 2020, 59, 12440–12444.
3 (a) Y. Himeshima, T. Sonoda and H. Kobayashi, Chem. Lett., 1983,
1211–1214; (b) S. Yoshida, Y. Hazama, Y. Sumida, T. Yano and
T. Hosoya, Molecules, 2015, 20, 10131–10140.
1666 | Chem. Commun., 2021, 57, 1663ꢀ1666
This journal is The Royal Society of Chemistry 2021