C O M M U N I C A T I O N S
formation of tetrasubstituted silyl ketene acetals.28 Silylene transfer
to the R,â-unsaturated ester moiety of allyl methacrylate (10)
occurred instead of transfer to the terminal alkene (eq 4). Intermedi-
Acknowledgment. This research was supported by the National
Institute of General Medical Sciences of the National Institutes of
Health (GM54909). S.A.C. thanks the National Institutes of Health
for a predoctoral fellowship. K.A.W. thanks Merck Research
Laboratories and Johnson & Johnson for awards to support research.
We thank Dr. Phil Dennison for assistance with NMR spectroscopy,
Dr. Joseph W. Ziller for X-ray crystallography, and Dr. John
Greaves and Dr. John Mudd for mass spectrometry.
Supporting Information Available: Experimental procedures;
spectroscopic, analytical, and X-ray data for the products (PDF, CIF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
ate oxasilacylopentene 11 underwent an Ireland-Claisen rearrange-
ment29,30 to provide silalactone 12 with the formation of an all-
carbon quaternary center.31 Adding substitution to the â-position
of the unsaturated ester afforded products 15a-b with high
diastereoselectivities and three contiguous stereocenters (eq 5).32
This stereochemistry may arise through a chairlike transition
structure (14) in which the allyl fragment approaches the face
opposite to the â-methyl group.
References
(1) Ando, W.; Ikeno, M.; Sekiguchi, A. J. Am. Chem. Soc. 1978, 100, 3613-
3615.
(2) Seyferth, D.; Lim, T. F. O. J. Am. Chem. Soc. 1978, 100, 7074-7075.
(3) Belzner, J.; Ihmels, H.; Pauletto, L.; Noltemeyer, M. J. Org. Chem. 1996,
61, 3315-3319.
(4) Jutzi, P.; Eikenberg, D.; Bunte, E.-A.; Mo¨hrke, A.; Neumann, B.;
Stammler, H.-G. Organometallics 1996, 15, 1930-1934.
(5) Gehrhus, B.; Hitchcock, P. B.; Lappert, M. F. Organometallics 1997, 16,
4861-4864.
(6) Franz, A. K.; Woerpel, K. A. J. Am. Chem. Soc. 1999, 121, 949-957.
(7) Sakai, N.; Fukushima, T.; Minakata, S.; Ryu, I.; Komatsu, M. Chem.
Commun. 1999, 1857-1858.
(8) Ando, W.; Ikeno, M.; Sekiguchi, A. J. Am. Chem. Soc. 1977, 99, 6447-
6449.
(9) Ishikawa, M.; Nakagawa, K.-I.; Kumada, M. J. Organomet. Chem. 1977,
135, C45-C49.
(10) Scha¨fer, A.; Weidenbruch, M.; Pohl, S. J. Organomet. Chem. 1985, 282,
305-313.
(11) Ando, W.; Hamada, Y.; Sekiguchi, A.; Ueno, K. Tetrahedron Lett. 1982,
23, 5323-5326.
Conversion of silalactone 15b to a functionalized diol demon-
strates the synthetic utility of this silylene transfer/Ireland-Claisen
reaction (eq 6). Reduction of silalactone 15b followed by oxidation
of the carbon-silicon bond33,34 afforded 1,3-diol 16 in 83% yield
over three steps starting from crotyl tiglate 13b.
(12) Ando, W.; Hagiwara, K.; Sekiguchi, A. Organometallics 1987, 6, 2270-
2271.
(13) Heinicke, J.; Gehrhus, B. J. Organomet. Chem. 1992, 423, 13-21.
(14) Gehrhus, B.; Lappert, M. F. J. Organomet. Chem. 2001, 617-618, 209-
223.
(15) Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105-10146.
(16) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
5363-5367.
(17) CÄ irakovic´, J.; Driver, T. G.; Woerpel, K. A. J. Am. Chem. Soc. 2002,
124, 9370-9371.
(18) CÄ irakovic´, J.; Driver, T. G.; Woerpel, K. A. J. Org. Chem. 2004, 69,
4007-4012.
(19) Silacyclopropane 2 was stored and handled in a drybox, but its reactions
can be conducted under standard laboratory conditions.
(20) Oxasilacyclopropanes derived from esters have not been reported, but those
derived from ketones have been isolated (see ref 11).
(21) Driver, T. G.; Woerpel, K. A. J. Am. Chem. Soc. 2004, 126, 9993-10002.
(22) Nucleophilic silylenes have also been reported: Belzner, J.; Dehnert, U.;
Ihmels, H. Tetrahedron 2001, 57, 511-517.
In addition to Ireland-Claisen rearrangements, preliminary
studies show that these silyl ketene acetal intermediates also
participate in aldol addition reactions.35,36 Treatment of benzyl
acrylate under silylene transfer conditions followed by benzaldehyde
in the presence of a Lewis acid formed Mukaiyama aldol products
17 and 18 with 90:10 overall diastereoselectivity (eq 7).
(23) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1980, 19, 947-973.
(24) Anac¸, O.; O¨ zdemir, A. D.; Sezer, O. HelV. Chim. Acta 2003, 86, 290-
298.
(25) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66-77.
(26) In the reaction of ethyl 3,3-dimethylacrylate, oxasilacyclopentene formation
was not observed, likely due to steric hindrance.
(27) Stork, G.; Rosen, P.; Goldman, N. L. J. Am. Chem. Soc. 1961, 83, 2965-
2966.
(28) Cyclic phosphoenol ethers derived from an enone and trialkyl phosphite
have been shown to react with electrophiles: McClure, C. K.; Mishra, P.
K. Tetrahedron Lett. 2002, 43, 5249-5253.
(29) Ireland, R. E.; Wipf, P.; Armstrong, J. D., III. J. Org. Chem. 1991, 56,
650-657.
(30) Chai, Y.; Hong, S.-p.; Lindsay, H. A.; McFarland, C.; McIntosh, M. C.
Tetrahedron 2002, 58, 2905-2928.
(31) For examples of stereoselective synthesis of all-carbon quaternary centers
by Ireland-Claisen rearrangements, see: (a) Funk, R. L.; Abelman, M.
M.; Munger, J. D., Jr. Tetrahedron 1986, 42, 2831-2846. (b) Echavarren,
A. M.; de Mendoza, J.; Prados, P.; Zapata, A. Tetrahedron Lett. 1991,
32, 6421-6424. (c) Gilbert, J. C.; Selliah, R. D. Tetrahedron 1994, 50,
1651-1664. (d) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed.
1998, 37, 388-401.
Silylene transfer to R,â-unsaturated esters produces oxasila-
cyclopentenes and provides a new effective method for regio- and
stereoselective enolate formation. These oxasilacyclopentenes are
useful synthetic intermediates that can undergo facile and selective
Ireland-Claisen rearrangements and aldol addition reactions to
provide products with multiple contiguous stereocenters and
quaternary carbon centers.
(32) The stereochemical assignment was determined by X-ray crystallography.
(33) Tamao, K. AdVances in Silicon Chemistry; JAI: Greenwich, CT, 1996;
Vol. 3, pp 1-62.
(34) Peng, Z.-H.; Woerpel, K. A. Org. Lett. 2002, 4, 2945-2948.
(35) Brownbridge, P. Synthesis 1983, 1-28.
(36) Mahrwald, R. Chem. ReV. 1999, 99, 1095-1120.
JA042893R
9
J. AM. CHEM. SOC. VOL. 127, NO. 7, 2005 2047