Scheme 1
Scheme 2
isolated from the tropical marine sponge Cymbastela hooperi,
and shows potent antimalarial activity and cytotoxicity
against Plasmodium falciparum clones and KB cells.5 The
cembrene-derived tetracyclic diterpenes (e.g., kempanes and
rippertanes) were isolated from the secretions of nasute
soldier termites.6
Ozonolysis of methylcyclohexene (O3, CH2Cl2; Me2S,
CH2Cl2; 93% yield), followed by slow addition of vinyl-
magnesium bromide to keto aldehyde 9 at 10 °C gave allyl
alcohol 10 in 71% yield. Reaction of 10 with cyclopentadiene
in the presence of pyrrolidine in MeOH provided fulvene
11 in 83% yield. Oxidation of 11 (Dess-Martin periodate
or PDC in CH2Cl2, 78% yield) afforded enone 2 which
reacted smoothly with Et3N in refluxing DMF to provide
the desired intermediate 1 in 74% yield. The single-crystal
X-ray analysis of 1a confirmed the structure and stereo-
chemistry of 1, Figure 1.13 Surprisingly, treatment of 2 with
TMSCl-Et3N-DMAP in CH2Cl2 followed by an IMDA led
to the formation of 1 (50% yield) instead of the desired
synthon 7. The same result was obtained when ketone 2 was
reacted with DABCO in CH2Cl2. The regioselective syn-
addition of the diene across one of the double bonds of
cyclopentadiene on the fulvene provides the tricyclic 1H-
cyclopenta[b]naphthalene, a motif which is found in numer-
ous natural products and pharmaceutical agents, such as SP-
18904,14 treprostinil,15 bisacutifolone,16 pycnanthuquinone,17
and kigelinol.
Dauben et al. reported a 23-step synthesis of kempene-2
that included a Diels-Alder cycloaddition and a Ti-induced
McMurry cyclization of a keto aldehyde.7 Paquette et al.
described an approach to the kempane skeleton via an
efficient palladium-catalyzed [3 + 2] cycloaddition,8 and in
1993, Mertz et al. described an enantioselective approach to
this system.9 More recently, Burnell and co-workers reported
a 19-step synthesis of the kempane ring system employing
a Diels-Alder cycloaddition as the key transformation.10
Examples of intermolecular Diels-Alder reactions of ful-
venes are well-documented,11 while examples of the corre-
sponding IMDA are rare.12 We envisioned that the key
intermediate 1 for the synthesis of kigelinol could be prepared
via an IMDA reaction of fulvene enone 2a, which in turn is
generated by isomerization of fulvene 2 during the reaction.
Fulvene 2 was subsequently synthesized from methylcyclo-
hexene in four steps and 43% total yield, Scheme 2.
(4) (a) Akunyili, D. N.; Houghton, P. J. Phytochemistry, 1993, 32, 1015.
(b) Moideen, S. V. K.; Houghton, P. J.; Rock, P.; Croft, S. L.; Aboagye-
Nyame, F. Planta Med. 1999, 65, 536. (c) Weiss, C. R.; Moideen, S. V.
K.; Croft, S. L.; Houghton, P. J. J. Nat. Prod. 2000, 1306.
(5) (a) Ko¨nig, G. M.; Wright, A. D. J. Org. Chem. 1996, 61, 3259. (b)
Weiss, C. R.; Moideen, S. V. K.; Croft, S. L.; Houghton, P. J. J. Nat. Prod.
2000, 63, 1306.
(6) (a) Baker, R.; Walmsley, S. Tetrahedron 1982, 38, 1899. (b)
Prestwich, G. D. Tetrahedron 1982, 38, 1911.
(7) Dauben, W. G.; Farkas, I.; Bridon, D. P.; Chuang, C.-P.; Henegar,
K. E. J. Am. Chem. Soc. 1991, 113, 5883.
A similar approach was used in the four-step synthesis of
fulvene enone 5 from methylcyclopentene (30% overall
yield), Scheme 3. Unfortunately, heating enone 5 with Et3N
in DMF afforded the 2,4-[a]methanobenzocycloheptene 15
instead of the desired compound 4.18 The structure of 15 (a
unique tricyclic core in artesieversin, plagiospirolide E, and
biennin C) was confirmed by a single-crystal X-ray analysis
(8) Paquette, L. A.; Sauer, D. R.; Cleary, D. G.; Kinsella, M. A.;
Blackwell, C. M.; Anderson, L. G. J. Am. Chem. Soc. 1992, 114, 7375.
(9) Metz, P.; Bertels, S.; Fro¨hlich, R. J. Am. Chem. Soc. 1993, 115, 12595.
(10) (a) Liu, C.; Burnell, D. J.J. Am. Chem. Soc. 1997, 119, 9584. (b)
Bao, G.; Liu, C.; Burnell, D. J. J. Chem. Soc., Perkin Trans. 1 2001, 2657.
(11) For recent studies, see: (a) Nair, V.; Nair, A. G.; Radhakrishnan,
K. V.; Nandakumar, M. V.; Rath, N. P. Synlett 1997, 7, 767. (b) Nair, V.;
Nair, A. G. Radhakrishnan, K. V.; Sheela, K. C.; Rath, N. P. Tetrahedron
1997, 53, 17361. (c) Himeda, Y.; Yamataka, H.; Ueda, I.; Hatanaka, M. J.
Org. Chem. 1997, 62, 6529. (d) Nair, V.; Kumar, S. Tetrahedron 1996, 52,
4029. (e) Nair, V.; Kumar, S.; Antikumar, G.; Nair, J. S. Tetrahedron 1995,
51, 9155. (f) Uebersax, B.; Neuenschwander, M.; Kellerhals, H.-P. HelV.
Chim. Acta 1982, 65, 74.
(12) Wu, T.-S.; Mareda, J.; Gupta, Y. N.; Houk, K. N. J. Am. Chem.
Soc. 1983, 105, 6996.
(13) 1a was prepared from the reaction of 1 with 2,4-dinitrophenylhy-
drazine in EtOH. Crystallographic data for 1a: C20H22N4O4, M ) 382.42,
monoclinic, space group P21/c, T ) 295(2) K, a ) 8.2559(5) Å, b ) 6.0132-
(4) Å, c ) 38.196(3) Å, â ) 93.358(2)°, V ) 1893.0(2) Å3, Z ) 4, D )
1.342 g/cm3, λ (Mo KR) ) 0.71073 Å, 15220 reflections collected, 4346
unique reflections, 255 parameters refined on F2, R ) 0.0911, wR2[F2] )
0.1978 [2941 data with F2>2σ(F2)].
(14) An antihyperglycemic agent isolated from Pycnanthus angolensis,
see: Luo, J.; Cheung, J.; Yevich, E. M.; Clark, J. P.; Tsai, J.; Lapresca, P.;
Ubillas, R. P.; Fort, D. M.; Carlson, T. J.; Hector, R. F.; King, S. R. J.
Pharmacol. Exp. Ther. 1999, 288, 529.
558
Org. Lett., Vol. 7, No. 4, 2005