A R T I C L E S
Ji et al.
calculates 3D energy maps around protein binding sites, thus
highlighting favorable sites for small functional groups, and
multiple copy simultaneous search43 (MCSS), which randomly
places thousands of copies of small functional groups into the
binding site, and the copies of small functional groups are
subject to energy minimization. The copies with the lowest
energies highlight hot spots of ligand binding. Many other
computational methods, such as the knowledge-based equiva-
lents of GRID (X-SITE44 and SuperStar45) and energy-based
approaches (PocketFinder,46 Q-SiteFinder47), also can be used
to explore sensitive and specific hot spots in the active site.
Computational solvent mapping48 and binding site determination
technology, based on grand canonical thermodynamics ensemble
Monte Carlo simulations (Lotus),49 can be regarded as an
important new breakthrough in this field. GRID/CPCA is an
excellent tool for understanding the selectivity of inhibitors for
a specific target over the other structure-related enzymes.50 If
the structure of the receptor is unknown, the pharmacophore
can be identified by structure-activity analysis of ligands or
by various computational methods, such as Catalyst, DISCO,
and GASP.51 Self-organizing maps (SOM) can be used as a
ligand-based approach to predict compound selectivity.52
Three-point or four-point pharmacophore models can be
generated from the above analyses.53 However, the key point
of the above pharmacophore investigation is to derive the
minimal pharmacophoric elements for each pharmacophore,
which means that a combinatorial application of different
pharmacophore identification methods is required to provide
as much information as possible. The minimal pharmacophoric
element can be an atom, a cluster of atoms, a virtual graph, or
vector(s). On the basis of the derived minimal pharmacophoric
elements, the second step of this approach is to query two main
general-purpose libraries: (1) A basic fragment library, which
is constructed on the basis of the fragments extracted directly
from known drugs and/or drug candidates. The fragments are
either from well-known libraries, such as the MDL compre-
hensive medicinal chemistry (CMC) database,54 the World Drug
Index (WDI),55 the Maccs Drug Data Report (MDDR),56 or from
the literature.57 These are summarized in Supporting Information
Figure 1. (2) A bioisostere library, which is constructed on the
basis of known bioisosteric principles reported in the literature
(Supporting Information Figure 2).58 The basic fragment library
is searched first to find all of the possible fragments that are
able to match the requirements of the minimal pharmacophoric
elements for each pharmacophore. Then the bioisostere library
is utilized to generate a focused fragment library with diverse
structures. The generated focused fragment library is then
interrogated with the rules for metabolic stability (see Supporting
Information Figure 3)59 and a toxicophore library (see Support-
ing Information Figure 4)60 to provide a focused library for a
specific pharmacophore. The focused library is then converted
into a LUDI fragment library, and the LUDI program is used
to search the optimal binding position for each fragment of each
pharmacophore.61
The third step of this approach is to link these fragments. A
constructed side chain library is used for this purpose, in which
the synthetic accessibility is considered.55b,c,62 This library,
shown in Supporting Information Figure 5, has been converted
into a LUDI linking library. SciFinder Scholar 2006,63 in
conjunction with the bioisostere library, also plays a key role
in securing the synthetic accessibility of the formed chemical
bond. The bioisostere library plays an assistant role in enhancing
the binding capabilities and optimizing the chemical properties
of the generated ligands. The generated ligand is interrogated
again with the rules for metabolism stability and the toxicophore
library.
The ligands generated by this iterative process are then docked
into the active site using AutoDock3.0,64 scored with consensus
(55) (a) Hajduk, P. J.; Bures, M.; Praestgaard, J.; Fesik, S. W. J. Med. Chem.
2000, 43, 3443-3447. (b) Ertl, P. J. Chem. Inf. Comput. Sci. 2003, 43,
374-380. (c) Lewell, X. Q.; Judd, D. B.; Watson, S. P.; Hann, M. M. J.
Chem. Inf. Comput. Sci. 1998, 38, 511-522.
(56) (a) Vieth, M.; Siegel, M. G.; Higgs, R. E.; Watson, I. A.; Robertson, D.
H.; Savin, K. A.; Durst, G. L.; Hipskind, P. A. J. Med. Chem. 2004, 47,
224-232. (b) Ertl, P.; Jelfs, S.; Muhlbacher, J.; Schuffenhauer, A.; Selzer,
P. J. Med. Chem. 2006, 49, 4568-4573. (c) Boda, K.; Johnson, A. P. J.
Med. Chem. 2006, 49, 5869-5879. (d) Sheridan, R. P. J. Chem. Inf.
Comput. Sci. 2002, 42, 103-108.
(57) (a) Boehm, H. J.; Boehringer, M.; Bur, D.; Gmuender, H.; Huber, W.; Klaus,
W.; Kostrewa, D.; Kuehne, H.; Luebbers, T.; Meunier-Keller, N.; Mueller,
F. J. Med. Chem. 2000, 43, 2664-2674. (b) Muller, G. Drug DiscoVery
Today 2003, 8, 681-691. (c) Carr, R.; Jhoti, H. Drug DiscoVery Today
2002, 7, 522-527. (d) Lewell, X. Q.; Jones, A. C.; Bruce, C. L.; Harper,
G.; Jones, M. M.; McLay, I. M.; Bradshaw, J. J. Med. Chem. 2003, 46,
3257-3274.
(58) (a) Patani, G. A.; LaVoie, E. J. Chem. ReV. 1996, 96, 3147-3176. (b)
Lima, L. M.; Barreiro, E. J. Curr. Med. Chem. 2005, 12, 23-49. (c)
Thornber, C. W. Chem. Soc. ReV. 1979, 8, 563-580. (d) Wermuth, C. G.
Molecular variations based on isosteric replacements. In The practice of
medicinal chemistry, 2nd ed.; Wermuth, C. G., Ed.; Academic Press: San
Diego, 2003; Chapter 13, pp 189-214. (e) Abraham, D. J. Analog design.
In Burger’s medicinal chemistry and drug discoVery, Vol. 1 drug discoVery,
6th ed.; Cannon, J. G., Ed.; John Wiley and Sons, Inc.: New York, 2003;
Chapter 16, pp 687-714.
(59) (a) van de Waterbeemd, H.; Smith, D. A.; Beaumont, K.; Walker, D. K. J.
Med. Chem. 2001, 44, 1313-1333. (b) Nassar, A.-E. F.; Kamel, A. M.;
Clarimont, C. Drug DiscoVery Today 2004, 9, 1020-1028. (c) Rishton,
G. M. Drug DiscoVery Today 1997, 2, 382-384. (d) Rishton, G. M. Drug
DiscoV. Today 2003, 8, 86-96.
(60) (a) Kazius, J.; McGuire, R.; Bursi, R. J. Med. Chem. 2005, 48, 312-320.
(b) Nassar, A.-E. F.; Kamel, A. M.; Clarimont, C. Drug DiscoVery Today
2004, 9, 1055-1064. (c) Williams, D. P.; Naisbitt, D. J. Curr. Opin. Drug
DiscoVery DeV. 2002, 5, 104-115. (d) Llorens, O.; Perez, J. J.; Villar, H.
O. J. Med. Chem. 2001, 44, 2793-2804.
(61) (a) Bo¨hm, H.-J. J. Comput.-Aided Mol. Des. 1992, 6, 61-78. (b) Bo¨hm,
H.-J.; Banner, D. W.; Weber, L. J. Comput.-Aided Mol. Des. 1999, 13,
51-56.
(62) Bemis, G. W.; Murcko, M. A. J. Med. Chem. 1999, 42, 5095-5099.
(63) Wagner, A. B. J. Chem. Inf. Model. 2006, 46, 767-774.
(64) Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.;
Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19, 1639-1662.
(41) Ji, H.; Zhang, W.; Zhang, M.; Kudo, M.; Aoyama, Y.; Yoshida, Y.; Sheng,
C.; Song, Y.; Yang, S.; Zhou, Y.; Lu, J.; Zhu, J. J. Med. Chem. 2003, 46,
474-485.
(42) (a) Goodford, P. J. J. Med. Chem. 1985, 28, 849-857. (b) von Itzstein,
M.; Wu, W.-Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Van Phan,
T.; Smythe, M. L.; White, H. F.; Oliver, S. W.; Colman, P. M.; Varghese,
J. N.; Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham, V. J.; Cameron,
J. M.; Penn, C. R. Nature 1993, 363, 418-423.
(43) (a) Miranker, A.; Karplus, M. Proteins 1991, 11, 29-34. (b) Zoete, V.;
Meuwly, M.; Karplus, M. Proteins 2005, 61, 79-93.
(44) Laskowski, R. A.; Thornton, J. M.; Humblet, C.; Singh, J. J. Mol. Biol.
1996, 259, 175-201.
(45) Boer, D. R.; Kroon, J.; Cole, J. C.; Smith, B.; Verdonk, M. L. J. Mol.
Biol. 2001, 312, 275-287.
(46) An, J.; Totrov, M.; Abagyan, R. Mol. Cell. Proteomics 2005, 4, 752-761.
(47) Laurie, A. T.; Jackson, R. M. Bioinformatics 2005, 21, 1908-1916.
(48) (a) Dennis, S.; Kortvelyesi, T.; Vajda, S. Proc. Natl. Acad. Sci. U.S.A.
2002, 99, 4290-4295. (b) Silberstein, M.; Dennis, S.; Brown, L.;
Kortvelyesi, T.; Clodfelter, K.; Vajda, S. J. Mol. Biol. 2003, 332, 1095-
1113.
(49) (a) Vajda, S.; Guarnieri, F. Curr. Opin. Drug DiscoVery DeV. 2006, 9,
354-362. (b) Moore, W. R., Jr. Curr. Opin. Drug DiscoVery DeV. 2005,
8, 355-364. (c) Clark, M.; Guarnieri, F.; Shkurko, I.; Wiseman, J. J. Chem.
Inf. Model. 2006, 46, 231-242.
(50) Kastenholz, M. A.; Pastor, M.; Cruciani, G.; Haaksma, E. E. J.; Fox, T. J.
Med. Chem. 2000, 43, 3033-3044.
(51) Patel, Y.; Gillet, V. J.; Bravi, G.; Leach, A. R. J. Comput.-Aided Mol.
Des. 2002, 16, 653-681.
(52) Noeske, T.; Sasse, B. C.; Stark, H.; Parsons, C. G.; Weil, T.; Schneider,
G. ChemMedChem 2006, 1, 1066-1068.
(53) Mason, J. S.; Good, A. C.; Martin, E. J. Curr. Pharm. Des. 2001, 7, 567-
597.
(54) (a) Fejzo, J.; Lepre, C. A.; Peng, J. W.; Bemis, G. W.; Ajay, Murcko, M.
A.; Moore, J. M. Chem. Biol. 1999, 6, 755-769. (b) Bemis, G. W.; Murcko,
M. A. J. Med. Chem. 1996, 39, 2887-2893.
9
3904 J. AM. CHEM. SOC. VOL. 130, NO. 12, 2008