Molecular Clips
FULL PAPER
using the ampoule unit 2277-201. The temperature during the experi-
ments was 298 K and we used water as solvent. 1 mL of the receptor so-
lution was filled into the cell of the microcalorimeter. The substrate so-
lution was added during the titration experiment by a syringe pump
6120-031 (Lund, Sweden).
[17] O. Livnah, E. A. Stura, D. L. Johnson, S. A. Middleton, L. S. Mulca-
hy, N. C. Wrighton, W. J. Dower, L. K. Jolliffe, I. A. Wilson, Science
1996, 273, 464–471.
[18] D. A. Dougherty, H. A. Lester, Nature 2001, 411, 252–254.
[19] K. Brejc, W. J. van Dijk, R. V. Klaassen, M. Schuurmans, J. van der
Oost, A. B. Smit, T. K. Sixma, Nature 2001, 411, 269–276.
[20] J. C. Ma, D. A. Dougherty, Chem. Rev. 1997, 97, 1303–1324.
[21] D. A. Dougherty, Science 1996, 271, 163–168.
Mass spectrometry: ESI mass spectra were recorded on a Finnigan MAT
95. Samples (20 mL) were introduced as 10ꢀ5 m solutions in methanol at
flow rates of 20 mLminꢀ1. Heated capillary temperature: 1508C. Ion
spray potential: 3.5 kV (positive ESI), 3.0 kV (negative ESI). About 20–
30 scans were averaged to improve the signal-to-noise ratio.
[22] H.-J. Schneider, T. Schiestel, P. Zimmerman, J. Am. Chem. Soc.
1992, 114, 7698–7703.
[23] H. J. Schneider, Chem. Soc. Rev. 1994, 23, 227–234.
[24] M. Dhaenens, L. Lacombe, J.-M. Lehn, J.-P. Vigneron, J. Chem. Soc.
Chem. Commun. 1984, 1097–1099.
[25] R. Meric, J. P. Vigneron, J. M. Lehn, J. Chem. Soc. Chem. Commun.
1993, 129–131.
[26] H. J. Schneider, R. Kramer, S. Simova, U. Schneider, J. Am. Chem.
Soc. 1988, 110, 6442–6448.
[27] K. Araki, H. Shimizu, S. Shinkai, Chem. Lett. 1993, 205–208.
[28] K. Murayama, K. Aoki, Chem. Commun. 1997, 119–120.
[29] L. Garel, B. Lozach, J. P. Dutasta, A. Collet, J. Am. Chem. Soc.
1993, 115, 11652–11653.
[30] S. Kubik, J. Am. Chem. Soc. 1999, 121, 5846–5855.
[31] S. M. Ngola, P. C. Kearney, S. Mecozzi, K. Russell, D. A. Dougherty,
J. Am. Chem. Soc. 1999, 121, 1192–1201.
[32] S. Rensing, M. Arendt, A. Springer, T. Grawe, T. Schrader, J. Org.
Chem. 2001, 66, 5814–5821.
Simulation methods: Molecular mechanics calculations, Monte-Carlo
simulations, and molecular dynamics: The program MacroModel 7.1 or
6.5[47,48] was used for model building procedures and as graphical inter-
face. Force-field parameters were taken from the built-in force fields,
which were in some cases modified versions of the classical published
versions. OPLS-AA and Amber* produced very similar results; the latter
was subsequently chosen for all minimizations and Monte Carlo simula-
tions. Minimizations were initially carried out in the gas phase, then in
aqueous solution. Most complex structures were virtually identical under
both conditions; this indicates strong enthalpic preference and hence sta-
bility of these arrangements. Energy minimizations were conducted over
1000 iterations on a Silicon Graphics O2 workstation or IBM workstation
RS/6000 34P model 260. The best structures were subjected to conforma-
tional searches with 5000-step Monte Carlo simulations.
[33] T. J. Shepodd, M. A. Petti, D. A. Dougherty, J. Am. Chem. Soc.
1988, 110, 1983–1985.
[34] A. Schenning, B. Debruin, A. E. Rowan, H. Kooijman, A. L. Spek,
R. J. M. Nolte, Angew. Chem. 1995, 107, 2288–2289; Angew. Chem.
Int. Ed. Engl. 1995, 34, 2132–2134.
Acknowledgement
[35] D. Philp, J. F. Stoddart, Angew. Chem. 1996, 108, 1242–1286;
Angew. Chem. Int. Ed. Engl. 1996, 35, 1154–1196.
[36] M. Lamsa, J. Huuskonen, K. Rissanen, J. Pursiainen, Chem. Eur. J.
1998, 4, 84–92.
[37] A. E. Rowan, J. Elemans, R. J. M. Nolte, Acc. Chem. Res. 1999, 32,
995–1006.
[38] J. Elemans, M. B. Claase, P. P. M. Aarts, A. E. Rowan, A. Schenning,
R. J. M. Nolte, J. Org. Chem. 1999, 64, 7009–7016.
This work was supported by the DFG (Deutsche Forschungsgemein-
schaft, Sonderforschungsbereich SFB 452) and the Fonds der Chemischen
Industrie. C.O. acknowledges financial support by an Emmy Noether re-
search grant of the DFG and the BMBF (Bundesministerium fꢁr Bildung
und Forschung) within the “Zentrum fꢁr Multifunktionelle Werkstoffe
und Miniaturisierte Funktionseinheiten” (BMBF 03N 6500). We thank
Professor Monika Mazik (Universitꢀt Braunschweig) for her assistance
with the interpretation of the calorimetric measurements.
[39] F. P. Schmidtchen, Chem. Ber. 1981, 114, 597–607.
[40] H. Fenniri, M. W. Hosseini, J. M. Lehn, Helv. Chim. Acta 1997, 80,
786–803.
[41] A. Domenech, E. Garcia-Espana, J. A. Ramirez, B. Celda, M. C.
Martinez, D. Monleon, R. Tejero, A. Bencini, A. Bianchi, J. Chem.
Soc. Perkin Trans. 2 1999, 23–32.
[42] F. G. Klꢀrner, B. Kahlert, Acc. Chem. Res. 2003, 36, 919–932.
[43] F.-G. Klꢀrner, J. Benkhoff, R. Boese, U. Burkert, M. Kamieth, U.
Naatz, Angew. Chem. 1996, 108, 1195–1198; Angew. Chem. Int. Ed.
Engl. 1996, 35, 1130–1133.
[1] D. Voet, J. G. Voet, Biochemistry, VCH, Weinheim, 1994.
[2] A. Fersht, Enzyme Structure and Mechanism, Freeman, New York,
1985.
[3] K. Dalziel, The Enzymes Vol. XI, Academic Press, New York, 1975.
[4] A. Wilkinson, J. Day, R. Bowater, Mol. Microbiol. 2001, 40, 1241–
1248.
[5] M. G. Rossmann, D. Moras, K. W. Olsen, Nature 1974, 250, 194–
199.
[44] F. G. Klꢀrner, J. Polkowska, J. Panitzky, U. P. Seelbach, U. Burkert,
M. Kamieth, M. Baumann, A. E. Wigger, R. Boese, D. Blꢀser, Eur.
J. Org. Chem. 2004, 1405–1423.
[6] A. M. Lesk, Curr. Opin. Struct. Biol. 1995, 5, 775–783.
[7] C. A. Bottoms, P. E. Smith, J. J. Tanner, Protein Sci. 2002, 11, 2125–
2137.
[45] M. Herm, O. Molt, T. Schrader, Chem. Eur. J. 2002, 8, 1485–1499.
[46] C. Jasper, T. Schrader, J. Panitzky, F.-G. Klꢀrner, Angew. Chem.
2002, 114, 1411–1415; Angew. Chem. Int. Ed. 2002, 41, 1355–1358.
[47] F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M.
Lipton, C. Caufield, G. Chang, T. Hendrickson, W. C. Still, J.
Comput. Chem. 1990, 11, 440–467.
[48] Macromodel, v. 7.1, Schrçdinger, 1500 SW First Ave., Ste. 1180,
Portland, OR 97201.
[49] C. S. Wilcox, Frontiers in Supramolecular Chemistry, Photochemistry,
VCH, Weinheim, 1991.
[8] S. Ramaswamy, M. ElAhmad, O. Danielsson, H. Jornvall, H.
Eklund, Protein Sci. 1996, 5, 663–671.
[9] J. P. Gallivan, D. A. Dougherty, J. Am. Chem. Soc. 2000, 122, 870–
874.
[10] W. L. Zhu, X. J. Tan, C. M. Puah, J. D. Gu, H. L. Jiang, K. X. Chen,
C. E. Felder, I. Silman, J. L. Sussman, J. Phys. Chem. A 2000, 104,
9573–9580.
[11] S. Tsuzuki, M. Yoshida, T. Uchimaru, M. Mikami, J. Phys. Chem. A
2001, 105, 769–773.
[12] S. Mecozzi, A. P. West, D. A. Dougherty, J. Am. Chem. Soc. 1996,
118, 2307–2308.
[13] S. K. Burley, G. A. Petsko, FEBS Lett. 1986, 203, 139–143.
[14] J. B. O. Mitchell, C. L. Nandi, I. K. McDonald, J. M. Thornton, S. L.
Price, J. Mol. Biol. 1994, 239, 315–331.
[50] L. Fielding, Tetrahedron 2000, 56, 6151–6170.
[51] We would like to thank Prof. H. J. Schneider for a copy of his pro-
gram for 1:1 complexes. Binding constants were determined with
Sigma Plot 3.02 from Jandel Corporation.
[52] P. Job, C. R. Hebd. Seances Acad. Sci. 1925, 180, 925.
[53] K. A. Connors, Binding Constants, The Measurement of Molecular
Complex Stability, Wiley, New York, 1987.
[15] S. Karlin, M. Zuker, L. Brocchieri, J. Mol. Biol. 1994, 239, 227–248.
[16] A. M. de Vos, M. Ultshc, A. A. Kossiakoff, Science 1992, 255, 306–
312.
Chem. Eur. J. 2005, 11, 477 – 494
ꢃ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
493