chains corresponding to residues i through i + 2 at readily
modified positions.
established that the Lewis acid-promoted reaction of a ketone
with a hydroxyalkyl azide permits a ring-expansive route to
lactams.5 To apply this reaction to the present problem, a
sublibrary of hydroxyalkyl azides with side chains corre-
sponding to naturally occurring amino acids 1 were reacted
with N-protected piperidones 2 (Scheme 2). The reaction
The natural amino acid sequence was morphed into a
heterocyclic platform by first changing the directionality of
an amide bond and adding a methylene group into the
backbone.4 Conformational restriction was then carried out
by cyclization into a seven-membered ring. The resulting
1,4-diazepin-5-one ring system was attractive because it
readily accommodated potential side chains/points of diver-
sity R to the carbonyl group, on the lactam nitrogen, and in
the guise of an amino acid attached to N-1. In the last case,
flexibility of the ψ bond of the amino acid permits the side
chain to act as a credible mimic of the parent i substituent.
Ab initio calculations of the proposed turn analogues showed
reasonable overlap of the side chains with those of a standard
γ-turn (see Figure 1).
Scheme 2
proceeds by hemiketal formation followed by azide insertion
into the heterocycle, affording iminium ethers as the primary
product.5a,c Hydrolysis of the latter species was expected to
form the desired 1,4-diazepin-5-ones. The advantage of this
technique is that it permits ready incorporation of enantio-
merically pure, prefabricated amino acid equivalents into
existing ketones. Herein, we demonstrate the concept using
the parent piperidone system. We have previously shown
that the ring expansion reaction readily accommodates
substituted carbocyclic ketones, which bodes well for systems
wherein Ri+1 * H.5e
The desired hydroxyalkyl azides were made from the
corresponding amino acids by reduction and conversion of
the R-amino group to an azide. When necessary, appropriate
protecting groups were incorporated into the products. The
amino acids were reduced using TMSCl/NaBH4 and the
resulting amino alcohols converted to the corresponding
azides via treatment with TfN3.6 In this way, a variety of
azides derived from various amino alcohols were obtained.
Note that 1h was prepared by direct azidation of serine
benzyl ester, resulting in an azidoalkyl alcohol having the
opposite absolute configuration relative to the rest of the
series (Table 1).
Figure 1. Overlay of an idealized γ-turn (grey) with the proposed
mimetic (black), both containing alanine side chains.
Another goal was for the proposed turns to be synthesized
in a modular manner. Recent work in these laboratories has
(3) (a) Hagler, A. T.; Osguthorpe, D. J.; Dauber-Osguthorpe, P.; Hempel,
J. C. Science 1985, 227, 1309-1315. (b) Kessler, H.; Holzemann, G.;
Zechel, C. Int. J. Pept. Protein Res. 1985, 25, 267-269. (c) Mammi, N. J.;
Hassan, M.; Goodman, M. J. Am. Chem. Soc. 1985, 107, 4008-4013. (d)
Kemp, D. S.; Carter, J. S. Tetrahedron Lett. 1987, 28, 4645-4648. (e)
Kemp, D. S.; Carter, J. S. J. Org. Chem. 1989, 54, 109-115. (f) Callahan,
J. F.; Bean, J. W.; Burgess, J. L.; Eggleston, D. S.; Hwang, S. M.; Kopple,
K. D.; Koster, P. F.; Nichols, A.; Peishoff, C. E.; Samanen, J. M.; Vasko,
J. A.; Wong, A.; Huffman, W. F. J. Med. Chem. 1992, 35, 3970-3972. (g)
Peishoff, C. E.; Ali, F. E.; Bean, J. W.; Calro, R.; D’Ambrosio, C. A.;
Eggleston, D. S.; Kline, T. P.; Koster, P. F.; Hwang, S. M. J. Med. Chem.
1992, 35, 3962-3969. (h) d’Ursi, A.; Pegna, M.; Amodeo, P.; Molinari,
H.; Verdini, A.; Zetta, L.; Temussi, P. A. Biochemistry 1992, 31, 9581-
9586. (i) Palmer, D. E.; Pattaroni, C.; Nunami, K.; Chadha, R. K.; Goodman,
M.; Wakamiya, T.; Fukase, K.; Horimoto, S.; Kitazawa, M.; Fujita, H.;
Kubo, A.; Shiba, T. J. Am. Chem. Soc. 1992, 114, 5634-5642. (j) Sato,
M.; Lee, J. Y. H.; Nakanishi, H.; Johnson, M. E.; Chrisciel, R. A.; Kahn,
M. Biochem. Biophys. Res. Commun. 1992, 187, 999-1006. (k) Callahan,
J. F.; Newlander, K. A.; Burgess, J. L.; Eggleston, D. S.; Nichols, A.; Wong,
A.; Huffman, W. F. Tetrahedron 1993, 49, 3479-3488. (l) Drewes, J. A.;
Rowlen, K. L. Biophys. J. 1993, 65, 985-991. (m) Lisowski, M.;
Pietrzynski, G.; Rzeszotarska, B. Int. J. Pept. Protein Res. 1993, 42, 466-
474. (n) Moroder, L.; D’Ursi, A.; Picone, D.; Amodeo, P.; Temussi, P. A.
Biochem. Biophys. Res. Commun. 1993, 190, 741-746. (o) Newlander, K.
A.; Callahan, J. F.; Moore, M. L.; Tomaszek, T. A., Jr.; Huffman, W. F. J.
Med. Chem. 1993, 36, 2321-2331. (p) Balaji, V. N.; Ramnarayan, K.; Chan,
M. F.; Rao, S. N. Pharm. Res. 1994, 7, 60-71. (q) Hoog, S. S.; Zhao, B.;
Winborne, E.; Fisher, S.; Green, D. W.; DesJarlais, R. L.; Newlander, K.
A.; Callahan, J. F.; Moore, M. L.; Huffman, W. F.; Abdel-Meguid, S. S. J.
Med. Chem. 1995, 38, 3246-3252. (r) Curran, T. P.; Chandler, N. M.;
Kennedy, R. J.; Keaney, M. T. Tetrahedron Lett. 1996, 37, 1933-1936.
(s) Schmidt, B.; Lindman, S.; Tong, W.; Lindeberg, G.; Gogoll, A.; Lai,
Z.; Tho¨rnwall, M.; Synnergren, B.; Nilsson, A.; Welch, C. J.; Sohtell, M.;
Westerlund, C.; Nyberg, F.; Karlen, A.; Hallberg, A. J. Med. Chem. 1997,
40, 903-919. (t) Kocis, P.; Campbell, J. B.; Sparks, R. B.; Wildonger, R.
High-Throughput Synth. 2001, 65-83. (u) Wilson, S. R.; Reinhard, K. High-
Throughput Synth. 2001, 55-64.
(4) This is related to the retro-inverso concept of peptidomimetic
design: (a) Ref 1a. (b) Chorey, M.; Goodman, M. Acc. Chem. Res. 1993,
26, 266-273.
(5) (a) Gracias, V.; Milligan, G. L.; Aube´, J. J. Am. Chem. Soc. 1995,
117, 8047-8048. (b) Gracias, V.; Milligan, G. L.; Aube´, J. J. Org. Chem.
1996, 61, 10-11. (c) Gracias, V.; Frank, K. E.; Milligan, G. L.; Aube´, J.
Tetrahedron 1997, 53, 16241-16252. (d) Sahasrabudhe, K.; Gracias, V.;
Furness, K.; Smith, B. T.; Katz, C. E.; Reddy, D. S.; Aube, J. J. Am. Chem.
Soc. 2003, 125, 7914-7922. (e) Smith, B. T.; Gracias, V.; Aube´, J. J. Org.
Chem. 2000, 65, 3771-3774.
(6) (a) Zaloom, J.; Roberts, D. C. J. Org. Chem. 1981, 46, 5173-5176.
(b) Vasella, A.; Witzig, C.; Chiara, J. L.; Lomas, M. M. HelV. Chim. Acta
1991, 74, 2073-2077 (c) Hedenstrom, M.; Holm, L.; Yuan, Z. Q.; Emtenas,
H.; Kihlberg, J. Bioorg. Med. Chem. Lett. 2002, 12, 841-844. (d)
Hedenstroem, M.; Yuan, Z.; Brickmann, K.; Carlsson, J.; Ekholm, K.;
Johansson, B.; Kreutz, E.; Nilsson, A.; Sethson, I.; Kihlberg, J. J. Med.
Chem. 2002, 45, 2501-2511.
1060
Org. Lett., Vol. 7, No. 6, 2005