Organic Process Research & Development
Article
(18) Grosjean, C.; Henderson, A. P.; Her
Knowles, J. P.; Whiting, A.; Wright, A. R. Org. Process Res. Dev. 2009,
13, 434.
(19) Salome, C.; Salome-Grosjean, E.; Park, K. D.; Morieux, P.;
Swendiman, R.; DeMarco, E.; Stables, J. P.; Kohn, H. J. Med. Chem.
2010, 53, 1288.
(20) Brown, J.; Chighine, A.; Colucci, M. A.; Galaffu, N.; Hirst, S. C.;
Seymour, H. M.; Shiers, J. J.; Wilkes, R. D.; Williams, J. G.; Wilson, J.
R. H. Tetrahedron Lett. 2008, 49, 4968.
(21) Jal, P. K.; Patel, S.; Mishra, B. K. Talanta 2004, 62, 1005.
(22) Girgis, M. J.; Kuczynski, L. E.; Berberena, S. M.; Boyd, C. A.;
Kubinski, P. L.; Scherholz, M. L.; Drinkwater, D. E.; Shen, X.; Babiak,
S.; Lefebvre, B. G. Org. Process Res. Dev. 2008, 12, 1209.
(23) The possibility of including several scavengers in this study was
considered, but was found to be impractical. The fact that there is no
continuity in the nature of scavengers makes them difficult to study by
DoE. For a continuously defined numerical parameter (e.g., temper-
ature), one can easily define upper and lower limits for the design
space (e.g., 30 to 80 °C) and a midpoint (e.g., 55 °C). There is no easy
way to do this for a categorical parameter such as ″nature of
scavenger”. Ways around this problem can be found by sorting
scavengers based on one of their characteristics, such as the empirically
measured efficiency of the scavenger, for example. However, this
method introduces a source of potentially large error as this
characteristic is only measured under one set of conditions, and is
assumed to remain unchanged when conditions vary across the design
space. Another drawback is that it significantly increases the number of
experiments required to study a system.
́
ault, D.; Ilyashenko, G.;
scavenging efficiency, closely followed by the molar equivalents
of SPM32 scavenger used and an interaction of these two
factors.
ASSOCIATED CONTENT
■
S
* Supporting Information
Synthesis of the Buchwald-Hartwig stream. Analysis of the
functional group loading (FGL) of PhosphonicS SPM32
scavenger. Typical procedure for an experiment in the
experimental matrix. ICP-OES analysis of the Pd content in
samples. Design and statistical analysis of the DoE experiment.
Screening of Pd-containing solutions for good Pd retention.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We would like to thank Dr. Andrei A. Zlota of The Zlota Co.
LLC for fruitful discussion and guidance regarding the setup of
the DoE experiments described in this paper and the
interpretation of their results.
(24) (a) Salome, C.; Salome-Grosjean, E.; Stables, J. P.; Kohn, H. J.
Med. Chem. 2012, 53, 3756. (b) Kohn, H. L.; Salome, C. WO 2010/
148300, 2010.
(25) (a) Ford, R.; Mather, A.; Mete, A.; Wiley, K.; Bull, R. J. US
2011/0190309, 2011. (b) Charrier, J. D.; MacCormick, S.; Storck, P.-
H.; Pinder, J.; O’Donnel, M. E.; Knegtel, R. M. A.; Young, S. C. Y.;
Kay, D.; Reaper, P. M.; Durrant, S. J.; Twin, H. C.; Davis, C. J. WO
2012/138938, 2012. (c) McGee, P.; Garnett, I.; Juan, E.; Manage, A.;
Carniaux, J.-F. US 2012/0165520, 2012.
(27) Mondal, B.; Wilkes, R. D.; Percy, J. M.; Tuttle, T.; Black, R. J.
G.; North, C. Dalton Trans. 2014, 43, 469.
(28) Narendar, N.; Velmathi, S. Tetrahedron Lett. 2009, 50, 5159.
(29) Wang, L.; Zhang, J.; Zhao, R.; Li, Y.; Li, C.; Zhang, C. Bioresour.
Technol. 2010, 101, 5808.
(30) Dinu, M. V.; Dragan, E. S. Chem. Eng. J. 2010, 160, 157.
(31) Boparai, H. K.; Joseph, M.; O’Carroll, D. M. J. Hazard. Mater.
2011, 186, 458.
(32) Owen, M. R.; Luscombe, C.; Lai, L.-W.; Godbert, S.; Crookes,
D. L.; Emiabata-Smith, D. Org. Process Res. Dev. 2001, 5, 308.
(33) Hersmis, M. C.; Spiering, A. J. H.; Waterval, R. J. M.; Meuldijk,
J.; Vekemans, J. A. J. M.; Hulshof, L. A. Org. Process Res. Dev. 2001, 5,
54.
(34) Alimardanov, A. R.; Barrila, M. T.; Busch, F. R.; Carey, J. J.;
Couturier, M. A.; Cui, C. Org. Process Res. Dev. 2004, 8, 834.
REFERENCES
■
(1) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177.
(2) Magano, J.; Dunetz, J. R. Transition Metal-Catalyzed Couplings in
Process Chemistry: Case Studies from the Pharmaceutical Industry; Wiley-
VCH, 2013.
(3) Barbaras, D.; Brozio, J.; Johannsen, I.; Allmendinger, T. Org.
Process Res. Dev. 2009, 13, 1068.
(4) Bien, J. T.; Lane, G. C.; Oberholzer, M. R. Organometallics in
Process Chemistry; Topics in Organometallic Chemistry; Springer,
2004; Volume 6, p 263.
(5) Guideline on the specification limits for residues of metal catalysts of
metal reagents, EMEA, Doc. Ref. EMEA/CHMP/SWP/4446/2000,
2008.
(6) Guideline for elemental impurities, Q3D, ICH, Draft consensus
guide - step 2b version, 2013.
(7) Hermann, J. C.; Chen, Y.; Wartchow, C.; Menke, J.; Gao, L.;
Gleason, S. K.; Haynes, N. E.; Scott, N.; Petersen, A.; Gabriel, S.; Vu,
B.; George, K. M.; Narayanan, A.; Li, S. H.; Qian, H.; Beatini, N.; Niu,
L.; Gan, Q. F. ACS Med. Chem. Lett. 2013, 4, 197.
(8) Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889.
(9) Manley, P. W.; Acemoglu, M.; Marterer, W.; Pachinger, W. Org.
Process Res. Dev. 2003, 7, 436.
(10) Prashad, M.; Hu, B.; Har, D.; Repic, O.; Blacklock, T. J.;
Acemoglu, M. Adv. Synth. Catal. 2001, 343, 461.
(11) Carrera, D. E.; PeiJue, S.; Safina, B. S.; Li, J.; Angelaud, R. Org.
Process Res. Dev. 2013, 17, 138.
(36) Fusion Product Development; S-Matrix Corporation; Eureka,
(12) Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133.
(13) Al-Hashimi, M.; Sullivan, A. C.; Wilson, J. R. H. J. Mol. Catal., A:
Chem. 2007, 273, 298.
(14) Al-Hashimi, M.; Qazia, A.; Sullivan, A. C.; Wilson, J. R. H. J.
Mol. Catal., A: Chem. 2007, 278, 160.
(15) Bullock, K. M.; Mitchell, M. B.; Toczko, J. F. Org. Process Res.
Dev. 2008, 12, 896.
(16) Reginato, G.; Sadler, P.; Wilkes, R. D. Org. Process Res. Dev.
2011, 15, 1396.
(17) Galaffu, N.; Man, S. P.; Wilkes, R. D.; Wilson, J. R. H. Org.
Process Res. Dev. 2007, 11, 406.
635
dx.doi.org/10.1021/op5000336 | Org. Process Res. Dev. 2014, 18, 626−635