2314
T. Kouko et al. / Tetrahedron 61 (2005) 2309–2318
1
238 (99). HRMS (EI) m/z calcd for C22H19BrN2O5:
470.0477. Found: 470.0476.
1717. H NMR (CDCl3, 270 MHz) d: 2.42 (3H, s, CH3–),
4.29 (1H, dd, JZ8.9, 4.0 Hz, –CHH–), 4.76 (1H, t, JZ
8.9 Hz, –CHH–), 5.52 (1H, dd, JZ8.9, 4.0 Hz, –CH–CH2–),
6.40 (1H, s, –CH–CO), 7.00 (1H, s, Ar-H), 7.09 (1H, d, JZ
7.3 Hz, Ar-H), 7.23 (1H, t, JZ7.3 Hz, Ar-H), 7.30–7.38
(5H, m, Ar-H), 8.65 (1H, d, JZ1.3 Hz, Ar-H). 13C NMR
(CDCl3, 68 MHz) d: 23.7, 56.5, 57.7, 70.3, 113.9, 119.7,
120.0, 120.6, 125.3, 126.3, 126.7, 127.6, 129.1, 129.2,
136.4, 137.5, 152.7, 168.2, 168.3. MS (EI) m/z (%): 483
(MC2, 15), 481 (MC, 17), 455 (28), 453 (28), 265 (34), 263
(35), 223 (99), 221 (100), 142 (34), 104 (57), 43 (37).
HRMS (EI) m/z calcd for C21H16BrN5O4: 481.0386. Found:
481.0391. Anal. Calcd for C21H16BrN5O4: C, 52.30; H,
3.34; N, 14.52. Found: C, 52.26; H, 3.39; N, 14.43.
4.2.2. (500R)-N-{1-(10-Acetyl-60-bromoindol-3-yl)-2-oxo-
2-(200-oxo-500-phenyl-300,100-oxazolidinyl)ethyl}ethoxy-
formamide (7a) (Table 1, entry 3). Yellow viscous oil. 1H
NMR (CDCl3, 300 MHz) d: 1.14–1.31 (3H, m, CH3–CH2–),
2.47 (3H!0.75, s, CH3–CO), 2.64 (3H!0.25, s, CH3–CO),
4.02–4.31 (3H, m, –CHH– and –CH2–CH3), 4.59 (1H!
0.25, dd, JZ8.8, 8.6 Hz, –CHH–), 4.74 (1H!0.75, dd, JZ
9.0, 8.8 Hz, –CHH–), 5.32 (1H!0.25, dd, JZ8.6, 3.5 Hz,
–CH–CH2–), 5.49 (1H!0.75, dd, JZ8.8, 4.5 Hz, –CH–
CH2–), 5.56 (1H!0.75, br, –NH–), 5.80 (1H!0.25, br,
–NH–), 6.83 (1H, d, JZ8.1 Hz, –CH–CO), 6.96–7.61 (8H,
m, Ar-H), 8.63 (1H!0.75, s, Ar-H), 8.68 (1H!0.25, d, JZ
1.5 Hz, Ar-H). HRMS (EI) m/z calcd for C24H22BrN3O6:
527.0692. Found: 527.0691. The ratio (1:2.9) of two
diastereoisomers was determined by HPLC.
4.3. Preparation of optical pure indolylglycinol 10
4.3.1. tert-Butyl (10S,500R)-N-{10-(1-Acetyl-6-bromoindol-
3-yl)-20-oxo-20-(200-oxo-500-phenyl-300,100-oxazolidinyl)-
ethylcarbamate (9). To a solution of azide (S)-7c (387 mg,
0.80 mmol) in THF (8 mL) and 10% HCl (0.3 mL),
n-tributylphosphine (0.40 mL, d 0.81, 1.6 mmol) was added
dropwise at 0 8C. The stirred reaction mixture was gradually
warmed to ambient temperature over 12 h. After removal of
the solvent, the residue was diluted with AcOEt (40 mL)
and washed with satd NaCl (5 mL). The organic layer was
dried over MgSO4 and concentrated under reduced pressure
to give a crude amine. A solution of the crude amine, DMAP
(9.8 mg, 0.08 mmol) and di-tert-butyl dicarbonate (0.9 mL,
d 0.95, 4.0 mmol) in CH2Cl2 (8 mL) was stirred at room
temperature for 3 days. After removal of the solvent, the
residue was purified by silica gel column chromatography
with AcOEt–hexane (1:1) as eluent to afford indolylglycine
9 (366 mg, 82%) as a colorless powder. Mp 110–115 8C
(AcOEt–hexane). [a]DZC121.0 (c 0.93, CHCl3). IR
(CHCl3) cmK1: 3495, 1786, 1713. 1H NMR (CDCl3,
300 MHz) d: 1.42 (9H, s, t-Bu), 2.45 (3H, s, CH3–CO),
4.22 (1H, dd, JZ9.0, 4.4 Hz, –CHH–), 4.73 (1H, t, JZ
9.0 Hz, –CHH–), 5.37 (1H, br d, JZ8.1 Hz, –NH–), 5.49
(1H, dd, JZ9.0, 4.4 Hz, –CH–CH2–), 6.79 (1H, d, JZ
8.1 Hz, –CH–NHBoc), 6.98 (2H, d, JZ7.4 Hz, Ar-H), 7.11
(1H, s, Ar-H), 7.13 (2H, t, JZ7.4 Hz, Ar-H), 7.22–7.28 (3H,
m, Ar-H), 8.63 (1H, s, Ar-H). 13C NMR (CDCl3, 100 MHz)
d: 23.8, 28.4, 49.9, 57.7, 70.1, 80.5, 116.3, 119.4, 119.5,
120.5, 125.3, 126.0, 126.6, 127.1, 128.8, 136.1, 137.6,
152.3, 154.7, 168.1, 169.7. MS (EI) m/z (%): 557 (MC2,
10), 555 (MC, 10), 501 (15), 499 (15), 367 (28), 365 (28),
311 (99), 309 (100), 269 (24), 267 (56), 265 (35), 225 (33),
223 (45), 164 (25), 57 (41). HRMS (EI) m/z calcd for
C26H26BrN3O6: 555.1005. Found: 555.1009. Anal. Calcd
for C26H26BrN3O6: C, 56.12; H, 4.71; N, 7.55. Found: C,
56.11; H, 4.74; N, 7.36.
4.2.3.
(5000R)-1-Acetyl-6-bromo-3-(10-[{(400-methyl-
phenyl)sulfonyl}amino]-20-oxo-20-{2000-oxo-5000-phenyl-
3000,1000-oxazolidinyl}ethyl)indole (7b) (Table 1, entry 4).
Colorless powder; Mp 232–235 8C (AcOEt–hexane). IR
(CHCl3) cmK1: 1784, 1718. 1H NMR (CDCl3, 300 MHz) d:
2.36 (3H, s, CH3–), 2.39 (3H, s, CH3–), 4.20 (1H, dd, JZ
9.2, 5.0 Hz, –CHH–), 4.67 (1H, dd, JZ9.2, 9.0 Hz, –CHH–),
5.35 (1H, dd, JZ9.0, 5.0 Hz, –CH–CH2–), 5.78 (1H, d, JZ
8.8 Hz, –NH–), 6.57 (1H, d, JZ8.8 Hz, –CH–NH–), 6.80
(1H, d, JZ8.4 Hz, Ar-H), 6.92 (1H, s, Ar-H), 6.93 (2H, dd,
JZ7.8, 1.6 Hz, Ar-H), 7.07–7.13 (5H, m, Ar-H), 7.24 (1H,
tt, JZ7.8, 1.6 Hz, Ar-H), 7.54 (2H, d, JZ8.5 Hz, Ar-H),
8.50 (1H, d, JZ1.7 Hz, Ar-H). 13C NMR (CDCl3,
100 MHz) d: 21.6, 23.7, 51.4, 57.7, 70.2, 114.9, 119.3,
119.4, 120.4, 125.7, 125.9, 126.2, 127.0, 127.1, 128.8,
128.9, 129.0, 136.0, 136.4, 137.1, 143.5, 152.2, 167.9,
168.7. MS (EI) m/z (%): 611 (MC2, 51), 609 (MC, 47), 456
(41), 454 (39), 421 (100), 419 (95), 382 (17), 380 (23), 379
(46), 377 (45), 251 (17), 249 (18), 224 (25), 222 (36), 155
(22), 132 (33), 91 (51). HRMS (EI) m/z calcd for C28H14-
BrN3O6S: 609.0569. Found: 609.0570. The ratio (1:7) of
two diastereoisomers was determined by HPLC.
4.2.4. (10R,500R)-1-Acetyl-3-{10-azido-20-oxo-20-(200-oxo-
500-phenyl-300,100-oxazolidinyl)ethyl}-6-bromoindole [(R)-
7c]. Yellow powder; Mp 148 8C (AcOEt–hexane). [a]DZ
K244.7 (c 0.37, CHCl3). IR (CHCl3) cmK1: 2110, 1782,
1
1717. H NMR (CDCl3, 270 MHz) d: 2.66 (3H, s, CH3–),
4.34 (1H, dd, JZ8.9, 3.6 Hz, –CHH–), 4.66 (1H, t, JZ
8.9 Hz, –CHH–), 5.40 (1H, dd, JZ8.9, 3.6 Hz, –CH–CH2–),
6.45 (1H, s, –CH–CO), 7.26–7.48 (6H, m, Ar-H), 7.58 (1H,
s, Ar-H), 7.64 (1H, d, JZ8.6 Hz, Ar-H), 8.68 (1H, d, JZ
1.7 Hz, Ar-H). 13C NMR (CDCl3, 68 MHz) d: 23.9, 56.6,
58.1, 70.4, 114.0, 119.8, 120.1, 121.0, 125.9, 126.0, 126.8,
127.6, 129.2, 129.5, 136.5, 137.9, 152.9, 167.7, 168.4. MS
(EI) m/z (%): 483 (MC2, 2), 481 (MC, 2), 455 (18), 453
(18), 223 (34), 221 (35), 163 (81), 133 (95), 104 (100), 91
(34), 77 (22), 43 (19). Anal. Calcd for C21H16BrN5O4: C,
52.30; H, 3.34; N, 14.52. Found: C, 52.32; H, 3.45; N, 14.13.
4.3.2. tert-Butyl (S)-N-[1-(6-bromoindol-3-yl)-2-hydroxy]-
ethylcarbamate (10). Sodium borohydride (75 mg,
1.99 mmol) in water (0.45 mL) was added to a solution of
indolylglycine 9 276 mg, 0.50 mmol) in THF (10 mL) at
room temperature. After stirring at the same temperature for
30 min, 10% LiOH (5 mL) was added. The reaction mixture
was stirred under the same conditions for 30 min. The
resulting mixture was concentrated under reduced pressure
to give a residue, which was extracted with AcOEt
(15 mL!2). The organic layer was washed with satd
4.2.5. (10S,500R)-1-Acetyl-3-{10-azido-20-oxo-20-(200-oxo-
500-phenyl-300,100-oxazolidinyl)ethyl}-6-bromoindole [(S)-
7c]. Yellow powder; Mp 148 8C (AcOEt–hexane). [a]DZ
C120.9 (c 0.28, CHCl3). IR (CHCl3) cmK1: 2110, 1784,