Thymidine Analogues of Increasing Size in DNA
and in studies of the physical origins of DNA curvature.7
Biophysical studies have shown that thymine and ade-
nine isosteres destabilize DNAs in which they are
substituted, unless they are in a terminal position, in
which case they can be strongly stabilizing, due to their
avid stacking with natural DNA bases.4,8 Structural
studies have shown that, despite the destabilization when
present at nonterminal locations, thymine and adenine
mimics show essentially the same structures as the
natural congeners. For example, difluorotoluene was
shown to occupy a Watson-Crick-like position opposite
adenine in a 12mer DNA duplex,9 even though several
lines of evidence showed that the fluoroaromatic com-
pound does not measurably form hydrogen bonds in
aqueous solution.4
The results of replication with isosteres have led to the
hypothesis that, for many high-fidelity enzymes, steric
exclusion effects may be dominant in the selective
replication of matched base pairs at the exclusion of
mismatched ones.20 In such a model, high fidelity re-
quires a tight active site to reject sterically mismatched
nucleotides and to enforce correct overall Watson-Crick-
like geometry in the incipient pair.21 Interestingly, recent
studies of sterically altered deoxyribose have added
support to this idea at the level of the DNA backbone.22
Since steric effects are widely believed to be crucial to
biological selectivity in enzymatic systems, it would be
useful to have chemical tools to probe such effects in a
systematic way. With this in mind, we conceived a new
series of thymine analogues; 2,4-diHydrogentoluene (H),
diFluorotoluene (F), 2,4-dichLorotoluene (L), 2,4-diBro-
motoluene (B), and 2,4-diIodotoluene (I) in which the size
is varied systematically by replacing the oxygen nucleo-
base substituents with hydrogen, fluorine, chlorine,
bromine, and iodine (Figure 1). Since the oxygens are the
main protruding groups of thymine on its Watson-Crick
edge, this replacement has the effect of maintaining an
approximate shape of T while gradually increasing size
by about one Angstrom across the series. An early report
described the synthesis of the five deoxyribosides in this
series, and established their sugar ring conformational
preferences, which are virtually the same as those of
thymidine.23 For applications in biological recognition
studies, it is important to evaluate the behavior of these
molecular probes in DNA, in the absence of enzymes.
Here we describe the derivatization of these compounds
for incorporation into oligonucleotides, the characteriza-
tion of DNA strands containing them, and the evaluation
of their pairing and stacking properties in the double
helix.
Nonpolar nucleoside mimics have also been increas-
ingly useful of late in the study of protein-DNA and
enzyme-DNA recognition. Studies have been reported
with purine and pyrimidine mimics in a number of DNA
repair enzymes, including MutY,10 fpg,11 MutS, and
homologues,12 and in polypurine tract recognition by HIV
reverse transcriptase.13 Those studies have shed light on
the relative importance of hydrogen bonding and steric
interactions to these enzymes’ biochemical activities. In
addition to this, nonpolar nucleoside isosteres have
proven broadly useful in the study of DNA replication
by a wide variety of polymerase enzymes. Such nonpolar
analogues were first reported in 1997 to act as surpris-
ingly strong substrates for DNA polymerase I,14,15 leading
to the conclusion that at least some replicative DNA
polymerases function well in the synthesis of a base pair
without Watson-Crick hydrogen bonds. This has since
been confirmed by a number of studies of varied poly-
14-16
merase enzymes in vitro5,
and recently in living
bacterial cells as well.17 The discovery of the lack of a
hydrogen-bonding requirement in replication has led to
the design of other nonisosteric DNA base pairs for
expansion of the genetic information-encoding system.18,19
Experimental Section
Synthesis of Modified Nucleoside Phosphoram-
idites. The C-glycoside series (dH, dL, dB, dI) was
prepared as described previously,23 while one compound
(dF) is now commercially available as the phosphor-
amidite derivative. 5′-Tritylation of the other four com-
(7) (a) Maki, A. S.; Kim, T. W.; Kool, E. T. Biochemistry 2004, 43,
1102. (b) Maki, A. S.; Brownewell, F. F.; Liu, D.; Kool, E. T. Nucleic
Acids Res. 2003, 31, 1059.
(8) (a) Guckian, K. M.; Schweitzer, B. A.; Ren R. X.-F.; Sheils C. J.;
Tahmassebi, D. C.; Kool, E. T. J. Am. Chem. Soc. 2000, 122, 2213. (b)
Guckian, K. M.; Schweitzer, B. A.; Ren, R. X.-F.; Sheils, C. J.; Paris,
P. L.; Tahmassebi, D. C.; Kool, E. T. J. Am. Chem. Soc. 1996, 118,
8182.
(9) Guckian, K. M.; Krugh, T. R.; Kool, E. T. Nat. Struct. Biol. 1998,
5, 954.
(10) (a) Chepanoske, C. L.; Langelier, C. R.; Chmiel, N. H.; David,
S. S. Org. Lett. 2000, 2, 1341. (b) Chmiel, N. H.; Golinelli, M.-P.;
Francis, A. W.; David, S. S. Nucleic Acids Res. 2001, 29, 553.
(11) Francis, A. W.; Helquist, S. A.; Kool, E. T.; David, S. S. J. Am.
Chem. Soc. 2003, 125, 16235.
(12) (a) Schofield, M. J.; Brownewell, F. E.; Nayak, S.; Du, C.; Kool,
E. T.; Hsieh, P. J. Biol. Chem. 2001, 276, 45505. (b) Drotschmann, K.;
Yang, W.; Brownewell, F. E.; Kool, E. T.; Kunkel T. A. J. Biol. Chem.
2001, 276, 46225.
(13) Rausch, J. W.; Qu, J.; Yi-Brunozzi, H. Y.; Kool, E. T.; Le Grice
S. F. J. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 11279.
(14) Moran, S.; Ren, R. X.-F.; Rumney, S.; Kool, E. T. J. Am. Chem.
Soc. 1997, 119, 2056.
(15) Moran, S.; Ren, R. X.-F.; Kool, E. T. Proc. Natl. Acad. Sci. U.S.A.
1997, 94, 10506.
(16) (a) Matray, T. J.; Kool, E. T. J. Am. Chem. Soc. 1998, 120, 6191.
(b) Morales, J. C.; Kool, E. T. J. Am. Chem. Soc. 2000, 122, 1001. (c)
Dzantiev, L.; Alekseyev, Y. O.; Morales, J. C.; Kool, E. T.; Romano, L.
J. Biochemistry 2001, 40, 3215. (d) Morales, J. C.; Kool, E. T.
Biochemistry 2000, 39, 12979.
(17) Delaney, J. C.; Henderson, P. T.; Helquist, S. A.; Morales, J.
C.; Essigmann, J. M.; Kool, E. T. Proc. Natl. Acad. Sci. U.S.A. 2003,
100, 4469.
(18) (a) McMinn, D. L.; Ogawa, A. K.; Wu, Y.; Liu, J.; Schultz, P.
G.; Romesberg, F. E. J. Am. Chem. Soc. 1999, 121, 11585. (b) Ogawa,
A. K.; Wu, Y.; McMinn, D. L.; Liu, J.; Schultz, P. G.; Romesberg, F. E.
J. Am. Chem. Soc. 2000, 122, 3274. (c) Wu, Y.; Ogawa, A. K.; Berger,
M.; McMinn, D. L.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc.
2000, 122, 7621. (d) Tae, E. L.; Wu, Y.; Xia, G.; Schultz, P. G.;
Romesberg, F. E. J. Am. Chem. Soc. 2001, 123, 7439. (e) Yu, C.; Henry,
A. A.; Romesberg, F. E.; Schultz, P. G. Angew. Chem., Int. Ed. 2002,
41, 3841. (f) Henry, A. A.; Yu, C.; Romesberg, F. E. J. Am. Chem. Soc.
2003, 125, 9638. (g) Henry, A. A.; Olsen, A. G.; Matsuda, S.; Yu, C.;
Geierstanger, B. H.; Romesberg, F. E. J. Am. Chem. Soc. 2004, 126,
6923.
(19) (a) Piccirilli, J. A.; Krauch, T.; Moroney, S. E.; Benner S. A.
Nature 1990, 343, 6233. (b) Lutz, M. J.; Held, H. A.; Hottiger, M.;
Hubscher, U.; Benner, S. A. Nucleic Acids Res. 1996, 24, 1308. (c)
Hirao, I.; Harada, Y.; Kimoto, M.; Mitsui, T.; Fujiwara, T.; Yokoyama,
S. J. Am. Chem. Soc. 2004, 126, 13298. (d) Mitsui, T.; Kitamura, A.;
Kimoto, M.; To, T.; Sato, A.; Hirao, I.; Yokoyama, S. J. Am. Chem.
Soc. 2003, 125, 5298.
(20) (a) Kool, E. T. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 1.
(b) Kool, E. T. Curr. Opin. Chem. Biol. 2000, 4, 602.
(21) Kool, E. T. Annu. Rev. Biochem. 2002, 71, 191.
(22) (a) Strerath, M.; Cramer, J.; Restle, T.; Marx, A. J. Am. Chem.
Soc. 2002, 124, 11230. (b) Summerer, D.; Marx, A. J. Am. Chem. Soc.
2002, 124, 910. (c) Summerer, D.; Marx, A. Angew. Chem., Int. Ed.
2001, 40, 3693.
(23) Kim, T. W.; Kool, E. T. Org. Lett. 2004, 6, 3949.
J. Org. Chem, Vol. 70, No. 6, 2005 2049