A. Rossello et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1321–1326
1325
15. Coussens, L. M.; Fingleton, B.; Matrisian, L. Science
2002, 295, 2387.
16. Borkakoti, N. Biochem. Soc., Trans. 2004, 32, 17–
19.
17. Hutchinson, J. W.; Tierney, G. M.; Parson, S. L.; Davis,
T. R. C. J. Bone Joint Surgery 1998, 80, 907.
18. Holmbeck, K.; Bianco, P.; Caterina, J.; Yamada, S.;
Kromer, M.; Kuznetsov, S. A.; Mankani, M.; Robey, P.
G.; Poole, A. R.; Pidoux, I.; Ward, J. M.; Birkedal-
Hansen, H. Cell 1999, 99, 81.
The chemoinvasion assay clearly shows that both (R)-5a
and (R)-5b are able to reduce considerably the ability of
HUVEC cells to cross the matrigel barrier. At a concen-
tration of 1 lM, both inhibitors reduced invasion to
basal level, while at 0.1 lM, the effect of (R)-5a and
(R)-5b was less impressive. On this basis, both (R)-5a
and (R)-5b inhibitors can be considered to be potent
antiangiogenic agents, able to block the chemoinvasion
of HUVEC cells in the micromolar range.41
19. Steward, W. P. Cancer Chemother. Pharmacol. 1999, 43,
S56.
20. Dahlberg, L.; Billinghurst, R. C.; Manner, P.; Nelson, F.;
Webb, G.; Ionescu, M.; Reiner, A.; Tanzer, M.; Zukor,
D.; Chen, J.; Van Wart, H. E.; Poole, A. R. Arthritis
Rheum. 2000, 43, 673.
21. Scatena, R. Exp. Opin. Invest. Drugs 2000, 9, 2159.
22. Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C.
T. Curr. Med. Chem. 2003, 10, 925.
23. Wada, C. K.; Holms, J. H.; Curtin, M. L.; Dai, Y.;
FlorJancic, A. S.; Garland, R. B.; Guo, Y.; Heyman, H.
R.; Stacey, J. R.; Steinman, D. H.; Albert, D. H.; Bouska,
J. J.; Elmore, I. N.; Goodfellow, C. L.; Marcotte, P. A.;
Tapang, P.; Morgan, D. W.; Michaelides, M. R.; David-
sen, S. K. J. Med. Chem. 2002, 45, 219.
24. Supuran, C. T.; Casini, A.; Scozzafava, A. Med. Res. Rev.
2003, 23, 535.
25. Zook, S. E.; Dagnino Jr., R.; Deason, M. E.; Bender, S.
L.; Melnick, M. J. WO Patent 97/20824; 1997, 127,
108945.Chem. Abstr. 1995, 123, 2870.
26. Supuran, C. T.; Scozzafava, A. In Proteinase and Pepti-
dase Inhibitors: Recent Potential Targets for Drug Devel-
opment; Smith, H. J., Simons, C., Eds.; Taylor & Francis:
London & New York, 2002; pp 35–61.
27. Bernardo, M. M.; Brown, S.; Li, Zhi-Hong; Fridman, R.;
Mobashery, S. J. Biol. Chem. 2002, 277, 11201.
28. Rabbani, S. A.; Harakidas, P.; Guo, Y.; Steinman, D.;
Davidsen, S. K.; Morgan, D. W. Int. J. Cancer 2000, 87,
276.
In conclusion, in the new N-i-propoxy-N-biphen-
ylsulfonylaminobutylhydroxamic acids of type C, de-
signed as analogues of type A inhibitors, the R2 alkyl
substituents introduced on the carbon atom alpha to
the hydroxamic group of the pharmacophoric portion
of A seem to confirm our starting hypothesis: this new
R2 substitution site may strongly favour lipophilic inter-
actions with the nearby S1 region of the enzyme site,
reinforcing the binding of the planned new inhibitors
to the active site of MMP-2. Moreover, in the case of
the targeted MMP-14, this chemical manipulation of
the type A pharmacophore increases the MMPi potency
on this crucial MMP more than 1000-fold, shifting their
IC50 values from the micromolar to the nanomolar
range. A similar structural modification on the pharma-
cophoric portion of MMPi of type A does not substan-
tially modify the MMP-1/MMP-2 selectivity profile, but
maintains or reinforces the good indices. Finally, the
new type C MMPi, which prove to be active against
these two MMPs, MMP-2 and MMP-14, are potent
antiangiogenic agents, able to block the chemoinvasion
of HUVEC cells in the micromolar range.
References and notes
29. Nyormoi, O.; Mills, L.; Bar-Eli, M. Cell Death Differ.
2003, 5, 558.
30. Rossello, A.; Nuti, E.; Orlandini, E.; Carelli, P.; Rappos-
elli, S.; Macchia, M.; Minutolo, F.; Carbonaro, L.; Albini,
A.; Benelli, R.; Cercignani, G.; Murphy, G.; Balsamo, A.
Bioorg. Med. Chem. 2004, 12, 2441.
1. Seiki, M.; Yana, I. Cancer Sci. 2003, 94, 569–574.
2. Folguera, A. R.; Pendas, A. M.; Sanchez, L. M.; Lopez-
Otin, C. Int. J. Dev. Biol. 2004, 48, 411–424.
3. Baker, A. H.; Edwards, D. R.; Murphy, G. J. Cell Sci.
2002, 115, 3719.
4. Murphy, G.; Crabbe, T. Methods Enzymol. 1995, 248,
470.
5. Kleiner, D. E.; Stetler-Stevenson, W. G. Cancer Chemo-
ther. Pharmacol. 1999, 43, S42.
6. Aimes, R. T.; Quigley, J. Q. J. Biol. Chem. 1995, 270,
5872.
31. Sato, H.; Takino, T.; Okada, Y.; Cao, J.; Shinagawa, A.;
Yamamoto, E.; Seiki, M. Nature 1994, 370, 61.
32. Butler, G. S.; Butler, M. J.; Atkinson, S. J.; Will, H.;
Tamura, T.; Van Westrum, S. S.; Crabbe, T.; Clements, J.;
DÕorto, M. P.; Murphy, J. J. Biol. Chem. 1998, 273,
871.
7. Itoh, T.; Tanioka, M.; Matsuda, H.; Nishimoto, H.;
Yoshioka, T.; Suzuki, R.; Uehira, M. Clin. Exp. Metastas.
1999, 17, 177.
8. Lafleur, M. A.; Forsyth, P. A.; Atkinson, S. J.; Murphy,
G.; Edwards, D. R. Biochem. Biophys. Res. Commun.
2001, 282, 463.
33. Maquoi, E.; Frankenne, F.; Barmova, E.; Munaut, C.;
Sounni, N. E.; Remacle, A.; Noel, A.; Murphy, G.;
Foidart, J. M. J. Biol. Chem. 2000, 275, 11368.
34. Overall, C. M.; Tam, E.; McQuibban, G. A.; Morrison,
C.; Wallon, U. M.; Bigg, H. F.; King, A. E.; Roberts, C.
R. J. Biol. Chem. 2000, 275, 39497.
35. Sounni, N. E.; Roghi, C.; Chabottaux, V.; Janssen, M.;
Munaut, C.; Maquoi, E.; Galvez, B. G.; Gilles, C.;
Frankenne, F.; Murphy, G.; Foidart, J.-M.; Noel, A. J.
Biol. Chem. 2004, 279, 13564.
9. Cowan, K. N.; Jones, P. L.; Rabinovitch, M. Circ. Res.
1999, 84, 1223.
10. Jones, P. L.; Crack, J.; Rabinovitch, M. J. Cell Block
1997, 279.
36. Terp, G. E.; Cruciani, G.; Christensen, I. T.; Jørgensen, F.
S. J. Med. Chem. 2002, 45, 2675.
11. Eguchi, P. J.; Dempsey, G. D.; Frank, G. D.; Motley, D.;
Inagami, T. J. Biol. Chem. 2001, 276, 7957.
12. Ahonen, M.; Poukkula, M.; Baker, A. H.; Kashiwagi, M.;
Nagase, H.; Eriksson, J. E.; Ka¨ha¨ri, V.-M. Oncogene 2003,
22, 2121.
13. Giannelli, G.; Antonaci, S. Histol. Histopathol. 2002, 17,
339.
14. John, A.; Tuszynski, G. Pathol. Oncol. Res. 2001, 7, 14.
37. Using a conventional method to evaluate the optical
purity of carboxylic acids, the obtained enriched acids (S)-
7a and (R)-7a were transformed into their diastereoiso-
meric amides (S,S)-9a and (R,S)-9a with (S)-1-phenyleth-
ylamine ((S)-PEA). The resulted diastereoisomeric amides,
(S,S)-9a and (R,S)-9a, subjected to HPLC analysis to