4
Tetrahedron
over A1,3 strain. Transmetalation of C with a triorganoborane
3.
(a) Zanoni, G.; Pontiroli, A.; Marchetti, A.; Vidari, G. Eur. J. Org.
Chem. 2007, 3599–3611; (b) Yus, M.; González-Gómez, J. C.;
Foubelo, F. Chem. Rev. 2011, 111, 7774–7854.
(a) Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Zhou, Q.-L. Org. Lett.
2005, 7, 2333–2335; (b) Qiao, X.-C.; Zhu, S.-F.; Zhou, Q.-L.
Tetrahedron Asymmetry 2009, 20, 1254–1261; (c) Qiao, X.-C.;
Zhu, S.-F.; Chen, W.-Q.; Zhou, Q.-L. Tetrahedron Asymmetry
2010, 21, 1216–1220.
(a) Tamaru, Y. J. Organomet. Chem. 1999, 576, 215–231; (b)
Tamaru, Y. Eur. J. Org. Chem. 2005, 2647–2656.
Mita, T.; Higuchi, Y.; Sato, Y. Chem. Eur. J. 2015, 21, 16391–
16394.
Trost, B. M. Angew. Chem. Int. Ed. 1995, 34, 259–281.
Horino, Y.; Aimono, A.; Abe, H. Org. Lett. 2015, 17, 2824–2827.
Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc.
Chem. Res. 2008, 41, 40−49.
followed by reductive elimination from
a vinylpalladium
intermediate D gives the desired product 4.16, 17
4.
OH
OH
R1
1
B(pin)
R2
B(R3)3
R1 R3
OB(pin)
4
PdLn(0)
5.
6.
R1
R1
B(pin)
PdLn
B(pin)
R2
7.
8.
9.
R1 PdLn
R3
PdLn
O
O
D
H
H
B(R3)3
B(R3)3
A'
A
(R3)2BOH
10. For selected examples of catalytic conditions, see; (a) Tamaru, Y.;
Tanaka, A.; Yasui, K.; Goto, S.; Tanaka, S. Angew. Chem. Int. Ed.
1995, 34, 787–789. (b) Kimura, M.; Shimizu, M.; Tanaka, S.;
Tamaru, Y. Tetrahedron 2005, 61, 3709–3718.
R2CHO
OB(pin)
11. For selected examples of non-catalytic conditions, see; (a)
Hoffmann, R. W. Pure Appl. Chem. 1988, 60, 123–130; (b)
Andersen, M. W.; Hildebrandt, B.; Kosher, G.; Hoffmann, R. W.
Chem. Ber. 1989, 122, 1777–1782; (c) Pietruszka, J.; Schöne, N.
Eur. J. Org. Chem. 2004, 5011–5019; (d) Fang, G. Y.; Aggarwal,
V. K. Angew. Chem. Int. Ed. 2007, 46, 359–362; (e) Possémé, F.;
Deligny, M.; Carreaux, F.; Carboni, B. J. Org. Chem. 2007, 72,
984–989; (f) Berrée, F.; Gernigon, N.; Hercouet, A.; Lin, C. H.;
Carboni, B. Eur. J. Org. Chem. 2009, 329–333; (g) Schmidtmann,
E. S.; Oestreich, M. Angew. Chem. Int. Ed. 2009, 48, 4634–4638;
(h) Chen, M.; Roush, W. R. Org. Lett. 2010, 12, 2706–2709; (i)
Althaus, M.; Mahmood, A.; Suarez, J. R.; Thomas, S. P.;
Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132, 4025–4028; (j)
Che, J. L.-Y.; Scott, H. K.; Hesse, M. J.; Willis, C. L.; Aggarwal,
V. K. J. Am. Chem. Soc. 2013, 135, 5316–5319; (k) Yamamoto,
E.; Takenouchi, Y.; Ozaki, T.; Miya, T.; Ito, H. J. Am. Chem. Soc.
2014, 136, 16515–16521; (l) Gao, X.; Hall, D.; Deligny, M.;
Favre, A.; Carreaux, F.; Carboni, B. Chem. Eur. J. 2006, 12,
3132–3142.
R2
O
H
R1 PdLn
B
O
H
R1
O
H
O
C
B(R3)3
R2
Pd
Ln
O
B(R3)3
B
Scheme 3. A plausible reaction mechanism
In summary, we have developed a palladium-catalyzed three-
component reaction that provides access to a wide variety of (Z)-
anti-homoallylic alcohols starting from easily accessible and
stable 3-(pinacolatoboryl)allyl alcohols, aldehydes, and
triorganoboranes. Both the stereochemistry of the alkene and
diastereoselectivity associated with the catalysis are well
controlled.
12. For selected examples of α-substituted allylboronates, see: (a)
Andersen, M.; Hildebrandt, B.; Koester, G.; Hoffmann, R. W.
Chem. Ber. 1989, 122, 1777–1782; (b) Hoffmann, R. W.; Wolff, J.
J. Chem. Ber. 1991, 124, 563–569; (c) Hall, D. G. Synlett 2007,
1644–1655; (d) Beckmann, E.; Desai, V.; Hoppe, D. Synlett 2004,
2275–2280; (e) Carosi, L.; Lachance, H.; Hall, D. G. Tetrahedron
Lett. 2005, 46, 8981–8985; (f) Ito, H.; Ito, S.; Sasaki, Y.;
Matsuura, K.; Sawamura, M. J. Am. Chem. Soc. 2007, 129,
14856–14857; (g) Peng, F.; Hall, D. G. Tetrahedron Lett. 2007,
48, 3305–3309; (h) Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2007,
129, 3070–3071; (i) Carosi, L.; Hall, D. G. Angew. Chem. Int. Ed.
2007, 46, 5913–5915; (j) Pietruszka, J.; Schone, N.; Frey, W.;
Grundl, L. Chem. Eur. J. 2008, 14, 5178–5197.
Acknowledgments
We thank Prof. Ryuta Miyatake (University of Toyama) for his
assistance with HRMS measurements. This work was financially
supported by the JSPS KAKENHI Grant Number 15K05496.
References and notes
1.
σ-Allylpalladium-mediated nucleophilic allylation reactions, see:
(a) Kurosawa, H.; Urabe, A. Chem. Lett. 1985, 1839–1840; (b)
Kurosawa, H.; Ogoshi, S. Bull. Chem. Soc. Jpn. 1998, 71, 973–
981; (c) Nakamura, H.; Iwama, H.; Yamamoto, Y. J. Am. Chem.
Soc. 1996, 118, 6641–6647; (d) Nakamura, H.; Nakamura, K.;
Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 4242–4243; (e)
Fernandes, R. A.; Stimac, A.; Yamamoto, Y. J. Am. Chem. Soc.
2003, 125, 14133–14139; (f) Soiln, N.; Kjellgre, J.; Szabó, K. J.
Angew. Chem. 2003, 115, 3784–3786; Angew. Chem. Int. Ed.
2003, 42, 3656–3658; (g) Solin, N.; Kjellgren, J.; Szabó, K. J. J.
Am. Chem. Soc. 2004, 126, 7026–7033; (h) Barczak, N. T.; Grote,
R. E.; Jarvo, E. R. Organometallics 2007, 26, 4863–4865; (i)
Shaghafi, M. B.; Kohn, B. L.; Jarvo, E. R. Org. Lett. 2008, 10,
4743–4746.
13.
A
single synthetic-step operation to synthesize homoallylic
alcohols through conversion to allylboron reagents via tandem
hydroboration of alkynes−isomerization of (E)-1-
alkenylboronates, see: (a) Miura, T.; Nishida, Y.; Morimoto, M.;
Murakami, M. J. Am. Chem. Soc. 2013, 135, 11497–11500; (b)
Miura, M.; Nishida, Y.; Murakami, M. J. Am. Chem. Soc. 2014,
136, 6223–6226.
14. (a) P. B. Mackenzie, J. Whelan, B. Bosnich, J. Am. Chem. Soc.
1985, 107, 2046-2054; (b) H. Kurosawa, S. Ogoshi, N. Chatani,
Y. Kawasaki, S. Murai, I. Ikeda, Chem. Lett. 1990, 1745-1748; (c
.- . ckvall, K. L. Granberg, A. Heumann, Isr. J. Chem. 1991,
31, 17-24; (d . . ranberg, .- . ckvall, J. Am. Chem. Soc.
1992, 114, 6858-6863; (e) C. Amatore, S. Gamez, A. Jutand, G.
Meyer, M. Moreno-Ma as, L. Morral, R. Pleixats, Chem. Eur. J.
2000, 6, 3372-3376; (f) C. Amatore, A. Jutand, L. Mensah, G.
Meyer, J.-C. Fiaud, J. Y. Legros, Eur. J. Org. Chem. 2006, 1185-
1192; (g) G. Blessley, P. Holden, M. Walker, J. M. Brown, V.
Gouverneur, Org. Lett. 2012, 14, 2754-2757; (h) H. L. Amanda, J.
P. Morken, Org. Lett. 2014, 16, 2096-2099.
15. Intramolecular protonation of the boronate oxygen by the
Brønsted-acid hydroxyl group on palladium might preferentially
lead to the formation of A’. In addition, it would increase boron’s
electrophilicity. For related examples, see: (a) Jain, P.; Antilla, J.
C. J. Am. Chem. Soc. 2010, 132, 11884–11886 and ref 12e.
16. The transmetallation step is not clear at the moment.
2.
Recent studies on σ-allylpalladium-mediated enantioselective
carbonyl allylation reactions, see: (a) Zanoni, G.; Gladiali, S.;
Marchetti, A.; Piccinini, P.; Tredici, I.; Vidari, G. Angew. Chem.
2004, 116, 864–867; Angew. Chem. Int. Ed. 2004, 43, 846–849;
(b) Howell, G. P.; Minnaard, A. J.; Ferigna, B. L. Org. Biomol.
Chem. 2006, 4, 1278–1283; (c) Onomura, O.; Fujimura, N.; Oda,
T.; Matsumura, Y.; Demizu, Y. Heterocycles 2008, 76, 177–182;
(d) Wang, W.; Zhang, T.; Shi, M. Organometallics 2009, 28,
2640–2642; (e) Jiang, J.-J.; Wang, D.; Wang, W.-F.; Yuan, Z.-L.;
Zhao, M.-X.; Wang, F.-J.; Shi, M. Tetrahedron Asymmetry 2010,
21, 2050–2054; (f) Zhu, S.-F.; Qiao, X.-Q.; Zhang, Y.-Z.; Wang,
L.-X.; Zhou, Q.-L. Chem. Sci. 2011, 2, 1135–1140; (g) Yus, M.;
González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774–
7854. (h) Tsukamoto, H.; Kawase, A.; Doi, T. Chem. Commun.
2015,51,8027–8030.
17. Another possible reaction path based on Zhou’s observations
might be considered, see; ref 2.