B. Kellam et al. / Tetrahedron Letters 46 (2005) 1703–1706
1705
2).15 The b-carboxylic acid in 8 was first activated with
isobutyl chloroformate and then reduced with NaBH4
to yield Z-protected homoserine 9. Replacement of Z
with Dmc was achieved in one pot via hydrogenolysis
in EtOH followed by derivatisation with DMMD to
obtain 3 in high yield.
7. Atherton, E.;Bury, C.;Sheppard, R. C.;Williams, B. J.
Tetrahedron Lett. 1979, 20, 3041–3042.
8. Hietter, H.;Schultz, M.;Kunz, H. Synlett 1995, 1219–
1220.
9. Peters, S.;Lowary, T. L.;Hindsgaul, O.;Meldal, M.;
Bock, K. J. Chem. Soc., Perkin Trans. 1 1995, 3017–3022.
10. Bycroft, B. W.;Chan, W. C.;Chhabra, S. R.;Teesdale-
Spittle, P. H.;Hardy, P. M. J. Chem. Soc., Chem.
Commun. 1993, 777–778.
With the Dmc protected amino acid aglycones in hand,
glycosylation employing 2,3,4-tri-O-benzylfucopyranos-
yl bromide 1016 as the donor, alongside tetrabutylam-
monium bromide promoted in situ anomerisation,
afforded the desired a-glycosides 11–13 in extremely
rewarding yields (Scheme 3). Compared to the equiva-
lent procedures for Fmoc or Z-protected amino acids,
this high yielding glycosylation may be rationalised in
a manner akin to that described for glycosylation of
OꢀDonnell Schiff bases of serine and threonine.17 It
could be reasonably argued that the nucleophilicity of
the aglycones 1–3 may be enhanced due to the absence
of unfavourable intramolecular hydrogen bonding be-
tween the a-NH and side chain-OH groups commonly
observed with acyl or carbamoyl protected equivalents.
In both cases, confirmation of the desired a-linkage
was provided by the observed small coupling constants
11. Bycroft, B. W.;Chan, W. C.;Chhabra, S. R.;Hone, N. D.
J. Chem. Soc., Chem. Commun. 1993, 778–779.
12. (a) Na-Dmc-L-serine tert-butyl ester 1: mp 135–136 ꢁC; m/z
(+ES) 312 (M+1, 100%); mmax (KBr)/cmÀ1: 3426 (O–H, N–
H), 1735 (ester C@O), 1667 (amide C@O), 1606 (C@C);
25
½aꢀD +41.4 (c 0.1, MeOH); 1H NMR d (CDCl3): 0.85 (6H,
s, Dmc C(CH3)2), 1.34 (9H, s, C(CH3)3), 2.11, 2.13 (4H,
2 · s, Dmc 2 · CH2), 3.87 (2H, m, b-CH2), 4.06 (1H, m, a-
CH), 4.96 (1H, t, J 5.9, OH), 7.98 (1H, d, J 14.3, Dmc
C@CH), 11.19 (1H, dd, J 14.1, 8.2, NH); 13C NMR d
(CDCl3): 28.0 (C(C3)3), 28.2, 28.8 (Dmc C(CH3)2), 31.1 (C
(CH3)2), 51.0, 51.3 (Dmc 2 · CH2), 63.4 (b-CH2), 64.8 (a-
CH), 83.9 (C (CH3)3), 108.9 (Dmc C@CH), 158.0 (Dmc
C@CH), 167.1 (CO tert-butyl ester), 196.6, 199.3 (CO
dione);Found: C, 61.12;H, 8.09;N, 4.30. Calcd for
C16H25NO5Æ0.2H2O: C, 61.03;H, 8.14;N, 4.45;(b)
Na-
Dmc-L-threonine tert-butyl ester 2: mp 137–138 ꢁC; m/z
(+ES) 326 (M+1, 100%); mmax (KBr)/cmÀ1: 3423 (O–H, N–
H), 1736 (ester C@O), 1667 (amide C@O), 1605 (C@C);
(d, JH-1 ,H-2 = 3.3 Hz) in the 1H NMR spectra. Catalytic
hydrogenolysis of the glycosides gave the hydroxy sug-
ars 14–16 which were subsequently acetylated to afford
the fully protected adducts 17–19. Final acidolytic cleav-
age of the tert-butyl ester relinquished the desired build-
ing blocks 20–2218 suitable for SPPS.
0
0
25
½aꢀD +21.8 (c 1.0, MeOH); 1H NMR d (CDCl3): 1.04 (6H,
s, Dmc C(CH3)2), 1.28 (3H, d, J 6.4, CH3 Thr), 1.50 (9H,
s, C(CH3)3), 2.32, 2.35 (4H, 2 · s, Dmc 2 · CH2), 3.85 (1H,
dd, J 4.5, 9.3, a-CH), 4.28 (1H, m, b-CH), 8.01 (1H, d, J
14.1, Dmc C@CH), 11.29 (1H, dd, J 9.8, 13.8, NH); 13C
NMR d (CDCl3): 19.9 (CH3 Thr), 27.9 (C(CH3)3), 28.3,
28.7 (Dmc C(CH3)2), 31.1 (C (CH3)2), 51.0, 51.3 (Dmc
2 · CH2), 67.9 (b-CH), 69.2 (a-CH), 83.6 (C (CH3)3),
108.0 (Dmc C@CH), 158.6 (Dmc C@CH), 167.7 (CO tert
butyl ester), 196.6, 199.2 (CO dione);Found: C, 62.35;H,
8.36;N, 4.26. Calcd for C 17H27NO5: C, 62.75;H, 8.36;N,
4.30.
In conclusion we have described the synthesis of
Na-Dmc protected serine, threonine and homoserine
1-O-a-L-fucoside linked building blocks suitable for
Fmoc/tBu SPPS. The stability of Dmc to both hydro-
genolysis and acidolysis has been established and the
employment of these building blocks in the construction
of fucopeptide libraries is now ongoing and will be
reported in due course.
13. Thierry, J.;Yue, C.;Potier, P. Tetrahedron Lett. 1998, 39,
1557–1560.
14. Na-Dmc-L-homoserine tert-butyl ester 3: mp 150–152 ꢁC ;
Rf (acetone/pet.ether bp 40–60 ꢁC, 1:1) 0.41; m/z (+ES)
326.2 (M+H); mmax (KBr)/cmÀ1 3331 (OH), 1718 (ester
25
1
C@O); ½aꢀD + 3.02 (c 0.03, MeOH); H NMR d (CDCl3):
1.05 (6H, s, Dmc C(CH3)2), 1.49 (9H, s, C(CH3)3), 1.97
(1H, ddd, J 14.0, 9.3, 4.5, b-CHa), 2.22 (1H, ddd, J 14.4,
9.7, 4.9, b-CH), 2.34, 2.38 (each 2H, s, Dmc 2 · CH2), 3.19
(1H, m, CH2OH), 3.68 (1H, m, c-CHa), 3.79 (1H, m, c-
CHb), 4.29 (1H, m, J 8.9, 4.4, a-CH), 8.15 (1H, d, J 14.0,
Dmc C@CH), 11.34 (1H, dd, J 12.4, NH). dC (62.9 MHz)
27.94 (hSer-C(CH3)3), 28.50, 28.61 (Dmc (CH3)2), 31.12
(Dmc C(CH3)2), 35.33 (hSer b-CH2), 51.06, 51.42 (Dmc
2 · CH2), 57.52 (hSer c-CH2), 60.11 (hSer a-CH), 83.36
(hSer C(CH3)3), 107.94 (Dmc C@CH), 157.99 (Dmc
C@CH), 167.30 (CO tert butyl ester), 196.80, 199.18
(CO dione);Found: C, 62.46;H, 8.40;N, 4.34;
C17H27NO5 requires C, 62.75;H, 8.36;N, 4.30.
Acknowledgements
Alchemia Pty Ltd, Brisbane, Australia (P.W.) and the
Government of Malaysia (A.S.A.R.) are gratefully
acknowledged for financial assistance.
References and notes
1. (a) Arsequell, G.;Valencia, G. Tetrahedron: Asymmetry
1997, 8, 2839–2876;(b) Taylor, C. M. Tetrahedron 1998,
54, 11317–11362;(c) Arsequell, G.;Valencia, G. Tetra-
hedron: Asymmetry 1999, 10, 3045–3094.
2. (a) Dwek, R. A. Glycobiology 1993, 3, 97–130;(b) Dwek,
R. A. Chem. Rev. 1996, 96, 683–720.
15. Weitz, I. S.;Pellegrini, M.;Mierke, D. F.;Chorev, M.
J. Org. Chem. 1997, 62, 2527–2534.
3. Simanek, E. E.;McGarvey, G. J.;Jablonowski, J. A.;
Wong, C.-H. Chem. Rev. 1998, 98, 833–862.
4. Sawada, R.;Tsuboi, S.;Fukuda, M. J. Biol. Chem. 1994,
269, 1425–1431.
5. Harris, R. J.;Spellman, M. W. Glycobiology 1993, 3, 219–
224.
16. Dejter-Juszynski, M.;Flowers, H. M. Carbohydr. Res.
1971, 18, 219–226.
17. OꢀDonnell, M. J.;Polt, R. L. J. Org. Chem. 1982, 47,
2663–2666.
18. (a)
Na-Dmc-O-(2,3,4-tri-O-acetyl-a-L-fucopyranosyl)-
L-serine 20: mp 121–122 ꢁC; mmax (KBr)/cmÀ1: 1745 (ester
C@O), 1668 (amide C@O), 1601 (C@C); dH (250 MHz,
CDCl3): 1.05 (6H, s, Dmc (CH3)2), 1.11 (3H, d, J 6.3, Fuc
6. Elofsson, M.;Roy, S.;Salvador, L. A.;Kihlberg, J.
Tetrahedron Lett. 1996, 37, 7645–7648.