X. Lu, R. Bittman / Tetrahedron Letters 46 (2005) 1873–1875
1875
Sons: New York; (b) Ghosh, A. K.; Koltun, E. S.; Bilcer,
G. Synthesis 2001, 1281–1301.
mixture was stirred overnight, 5 g of K2CO3 was added,
the mixture was filtered, and the filtrate was removed.
Column chromatography (hexane/EtOAc 2:1) gave 1.23 g
of 10 (63% for two steps) as a colorless oil; Rf 0.15
9. Lu, X.; Byun, H.-S.; Bittman, R. J. Org. Chem. 2004, 69,
5433–5438.
25
25
10. Data for (À)-6: Rf 0.72 (EtOAc/hexane 1:3); ½aꢀD À11.0 (c
(hexane/EtOAc 3:1); ½aꢀD À23.7 (c 4.35, CHCl3); 1H NMR
1
2.7, CHCl3); H NMR (CDCl3) d 0.84–0.92 (m, 6H), 1.32
(CDCl3) d 0.88 (t, 3H, J = 6.8 Hz), 1.25–1.41 (m, 22H),
2.10 (m, 2H), 3.54 (m, 1H), 3.65 (m, 2H), 3.77 (m, 1H),
4.30 (d, 1H, J = 11.6 Hz), 4.60 (d, 1H, J = 11.6 Hz), 5.38
(m, 1H), 5.76 (m, 1H), 7.27–7.35 (m, 5H); 13C NMR
(CDCl3) 14.2, 19.5, 29.0, 29.3, 29.5, 29.8, 29.9, 30.0, 30.1,
31.9, 32.3, 63.3, 70.0, 74.1, 81.1, 126.3, 127.9, 128.0, 128.6,
138.0, 138.2. MS (ESI) m/z 408.3 (MNH4+).
(t, 3H, J = 6.8 Hz), 1.58–1.66 (m, 4H), 3.68 (t, 1H,
J = 7.6 Hz), 3.98 (t, 1H, J = 6.8 Hz), 4.13 (m, 1H), 4.22
(m, 3H), 4.52 (d, 1H, J = 12.0 Hz), 4.70 (d, 1H,
J = 12.0 Hz), 6.10 (d, 1H, J = 16.0 Hz), 6.85 (dd, 1H,
J = 6.0, 7.6 Hz), 7.25–7.40 (m, 5H); 13C NMR (CDCl3) d
8.1, 8.2, 14.2, 28.9, 29.4, 60.6, 65.9, 71.5, 77.2, 79.0, 83.1,
113.8, 124.4, 127.8, 128.4, 137.7, 143.4, 165.8.
16. (a) He, L.; Wanunu, M.; Byun, H.-S.; Bittman, R. J. Org.
Chem. 1999, 64, 6049–6055; (b) For a postulated mech-
anism to account for the conversion of a 1,2-diolto a 2-
azido-1-olwith inversion, see: Scheme 1 of Ref. 16a and
Mathieu-Pelta, I.; Evans, S. A., Jr. J. Org. Chem. 1992, 57,
3409–3413.
11. Reduction of ester 6 to allylic alcohol 7 with DIBAL-H
was carried out at À78 ꢁC because it was found that the
acetalwas reduced to reelase the primary hydroxy group
when the temperature was raised to 0 ꢁC. Data for ((À)-7):
25
Rf 0.21 (EtOAc/hexane 1:3); ½aꢀD À18.6 (c 2.8, CHCl3); 1H
25
NMR (CDCl3) d 0.84–0.92 (m, 6H), 1.70–1.86 (m, 4H),
3.77 (t, 1H, J = 8.0 Hz), 3.92 (m, 4H), 4.28 (m, 1H), 4.48
(d, 1H, J = 12.4 Hz), 4.70 (d, 1H, J = 12.0 Hz), 5.73 (m,
2H), 7.20 (m, 1H), 7.25–7.47 (m, 4H); 13C NMR (CDCl3)
d 8.4, 8.5, 29.6, 30.1, 62.5, 66.5, 70.6, 78.7, 80.9, 113.6,
126.7, 134.8, 139.2.
17. Data for (À)-2: Rf 0.51 (hexane/EtOAc 3:1); ½aꢀD À55.2 (c
1.34, CHCl3); 1H NMR (CDCl3)
d 0.88 (t, 3H,
J = 6.8 Hz), 1.25–1.41 (m, 22H), 2.10 (m, 2H), 3.50 (m,
1H), 3.71 (m, 2H), 3.90 (m, 1H), 4.34 (d, 1H, J = 11.6 Hz),
4.62 (d, 1H, J = 11.6 Hz), 5.48 (m, 1H), 5.80 (m, 1H),
7.27–7.35 (m, 5H); 13C NMR (CDCl3) 14.1, 22.7, 28.9,
29.2, 29.3, 29.6, 31.9, 32.4, 62.7, 66.0, 70.1, 80.7, 126.3,
127.7, 128.5, 137.8, 138.4. MS (ESI) m/z 433.4
25
12. Data for (À)-8: Rf 0.64 (EtOAc/hexane 1:3); ½aꢀD À13.5 (c
4.0, CHCl3); 1H NMR (CDCl3) d 0.84–0.91 (m, 6H), 1.60–
1.65 (m, 4H), 2.07 (s, 3H), 3.65 (t, 1H, J = 8.0 Hz), 3.92
(m, 2H), 4.20 (dd, 1H, J = 6.8, 13.6 Hz), 4.48 (d, 1H,
J = 12.4 Hz), 4.59 (m, 1H), 4.70 (d, 1H, J = 12.4 Hz), 5.66
(dd, 1H, J = 7.2, 15.6 Hz), 5.85 (dt, 1H, J = 5.6, 15.6 Hz),
7.25–7.37 (m, 5H); 13C NMR (CDCl3) d 8.0, 8.2, 20.9,
29.1, 29.6, 63.9, 66.2, 70.6, 77.8, 79.7, 113.4, 127.6, 128.0,
128.4, 129.4, 129.9, 138.1, 170.7.
+
(MNH4 ).18
18. Wang, X.-Z.; Wu, Y.-L.; Jiang, S.; Singh, G. Tetrahedron
Lett. 1999, 40, 8911–8914.
19. For a review of the Staudinger reaction, see: Gololobov,
Yu. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353–
1406.
25
20. Data for (À)-11: Rf 0.38 (CHCl3/MeOH 9:1); ½aꢀD À35.3 (c
25
13. Data for (À)-12: Rf 0.70 (hexane/EtOAc 3:1); ½aꢀD À16.4
0.75, CHCl3); 1H NMR (CDCl3)
d 0.88 (t, 3H,
1
(c 1.35, CHCl3); H NMR (CDCl3) d 0.84–0.92 (m, 6H),
J = 6.8 Hz), 1.25–1.41 (m, 22H), 2.10 (m, 2H), 3.10 (m,
4H), 3.71 (m, 3H), 4.31 (d, 1H, J = 12.0 Hz), 4.65 (d, 1H,
J = 12.0 Hz), 5.38 (m, 1H), 5.76 (m, 1H), 7.27–7.35 (m,
5H); 13C NMR (CDCl3) 14.1, 22.7, 29.2, 29.3, 29.5, 29.8,
32.8, 32.9, 55.9, 63.0, 70.1, 74.1, 81.2, 126.6, 127.7, 127.8,
128.4, 138.1. MS (ESI) m/z 390.3 (MH+).
1.70–1.86 (m, 4H), 3.77 (t, 1H, J = 8.0 Hz), 3.92 (m, 4H),
4.28 (m, 1H), 4.48 (d, 1H, J = 12.4 Hz), 4.70 (d, 1H,
J = 12.0 Hz), 5.73 (m, 2H), 7.20(m, 1H), 7.25–7.47 (m,
4H); 13C NMR (CDCl3) (8.4, 8.5, 29.6, 30.1, 62.5, 66.5,
70.6, 78.7, 80.9, 113.6, 126.7, 134.8, 139.2.
14. Copper-mediated Grignard reaction of allylic mesylate 12
gave a mixture of 9 and 13:
21. Data for (À)-1: Rf 0.35 (CHCl3/MeOH/NH4OH 135:25:4);
mp 81.0–82.3 ꢁC [lit.4b mp 72–75 ꢁC, lit.4c mp 76–77 ꢁC,
OBn
OBn
C12H25
MsCl, i-Pr2NEt
OMs
C
12H25MgBr, Li2CuCl4
O
O
+
9
7
O
O
Et
CH2Cl2, -40 °C - rt
Et2O, -78 °C - rt
Et
Et
Et
12 (92%)
13
9:13 = 1:2 (75%)
25
lit.4e mp 80.7–82.1 ꢁC]; ½aꢀD À2.9 (c 1.0, CHCl3) [lit.3a
15. Preparation of (À)-10. To a solution of acetate 8 (1.74 g,
5.0 mmol) and Li2CuCl4 (0.1 mmol, 1 mL of a 0.1 M
solution) in 50 mL of Et2O at À78 ꢁC was quickly added
freshly prepared C12H25MgBr (15 mmol) in 50 mL of
Et2O. The solution was stirred at À78 ꢁC for 3 h, then
warmed to room temperature and stirred overnight. After
the reaction was quenched with water, the organic phase
was separated, the aqueous phase was extracted with Et2O
(3 · 20 mL), the organic layer was dried (Na2SO4), and the
solvent was removed. To the residue was added 100 mL of
MeOH, followed by 10 mL of 5% aqueous H2SO4. The
22
21
½aꢀD À2.5ꢁ(c 6, CHCl3), lit.4b ½aꢀD À1.3ꢁ (c 3.5,
25
20
CHCl3), lit.4e ½aꢀD À2.7 (c 1.2, CHCl3), lit.4f ½aꢀD À1.4
20
(c 0.42, CHCl3), lit.4g ½aꢀD À1.6 (c 1.0, CHCl3)]; 1H NMR
(CDCl3) d 0.85 (t, 3H, J = 7.0 Hz), 1.23 (m, 20H), 1.35 (m,
2H), 2.02 (q, 2H, J = 7.0 Hz), 2.64 (br s, 4H), 2.84 (q, 1H,
J = 5.2 Hz), 3.64 (m, 2H), 4.04 (t, 1H, J = 6.0 Hz), 5.44
(dd, 1H, J = 15.4, 7.2 Hz), 5.71 (dt, 1H, J = 15.4, 7.2 Hz);
13C NMR (CDCl3) d 14.1, 22.7, 29.2, 29.3, 29.4, 29.5,
29.62, 29.65, 29.68, 31.9, 32.4, 56.2, 63.7, 75.1, 129.1,
134.7. MS (ESI) m/z 300.3 (MH+).