R. Sathunuru, J.-C. Quirion / Tetrahedron: Asymmetry 16 (2005) 917–919
919
5. (a) Finn, M. G.; Sharpless, K. B. In Asymmetric Synthesis;
Morrison, J. D., Ed.; Academic: New York, 1985; Vol. 5,
p 247; (b) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc.
1980, 102, 5974; (c) Gao, Y.; Hanson, R. M.; Klunder, J.
M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am.
Chem. Soc. 1987, 109, 5765; (d) Rossiter, B. E. In
Asymmetric Synthesis; Morrison, J. D., Ed.; Academic:
New York, 1985; Vol. 5, p 193; (e) Pfenniger, A. Synthesis
1986, 89.
6. Goujon, J. Y.; Duval, A.; Kirschleger, B. J. Chem. Soc.,
Perkin Trans. 1 2002, 496.
7. Coulonge, J.; Descotes, G.; Bahurd, Y. Bull. Soc. Chim.
Fr. 1965, 3, 619.
(ꢀ)-(2R,10S)-15 (90%). Deprotection of the (ꢀ)-
(2R,10S)-TBDMS group of 15 with Bu4NF and AcOH
in THF afforded (ꢀ)-(2R,10S)-alcohol 16 (70%). PCC
oxidation of (ꢀ)-(2R,10S)-16 in CH2Cl2 and NaOAc
furnished (ꢀ)-(2R,10S)-17 (75%). Removal of the
OAc protecting groups 17 with K2CO3, MeOH, and
25
D
H2O afforded (ꢀ)-(2R,10S)-2 (80%) (Scheme 2), ½aꢁ
¼
25
D
ꢀ64:1 (c 1.25, MeOH) [lit.1 ½aꢁ ¼ ꢀ52:0 (c 1.00,
MeOH)] with >99.0% ee (determined by chiral HPLC
analyses),9 the spectroscopic data10 of which were iden-
tical with those of the natural product.
8. Marquard, I. Eur. Patent Appl. EP183, 042 (Hoffman, F.;
La Roche; Co, A.-G.) Chem. Abstr. 1986, 105,
172047y.
3. Conclusion
9. The enantiomeric excess (ee) of (ꢀ)-(2R,10S)-14, -15, -16,
-17, and -2 were determined by chiral HPLC analyses
using a Chiracel OD column and Chiracel OJ col-
umn (25 · 0.46 cm, Daicel, Japan) eluent: hexane–i-
PrOH).
In summary we have demonstrated for the first time the
total synthesis of megapodiol in a highly stereoselective
manner using Sharpless asymmetric epoxidation as key
step. Our method involves simple and readily available
reagents, which makes it useful synthetic route for the
total synthesis of megapodiol.
10. Spectroscopic data: data for compound 2: 1H NMR
(200 MHz, CDCl3): d 1.21 (3H, s, CH3-12), 2.49 (s, 3H,
CH3-14), 3.19 (1H, dd, J = 16.0, 8.0 Hz, CH2-3, HA), 3.27
(1H, dd, J = 16.0, 10.0 Hz, CH2-3, HB), 3.48 (1H, d,
J = 16.0 Hz, CH2OH-11, HD), 3.70 (1H, d, J = 16.0 Hz,
CH2OH-11, HE), 4.85 (1H, m, H-2, HC) 6.73 (1H, d,
J = 10.0 Hz, H-8), 7.68 (1H, dd, J = 10.0, 2.0 Hz, H-7),
7.75 (1H, br s, H-5); 13C NMR (50.3 MHz, CDCl3): 19.9
(CH3-12), 26.7 (CH3-14), 29.9 (C-3), 68.4 (CH2OH-11),
73.1 (C-10), 89.2 (C-2), 109.5 (C-8), 125.6 (C-5), 127.8 (C-
6), 130.3 (C-7), 131.6 (C-4), 163.7 (C-9), 197.8 (C@O).
Anal. Calcd for C13H16O4 (236.10): C, 66.09; H, 6.83.
Found: C, 66.18; H, 6.94. MS: m/z (relative intensity) 236
(M+, 18), 204 (6), 187 (9), 162 (35), 147 (19), 119 (25), 91
(25), 75 (12), 57 (20), and 43 (100). FABHRMS: Calcd
C13H16O4 (M+) 236.105248. Found: 236.105245.
References
1. Jarvis, B. B.; Pena, N. B.; Comezoglu, S. N.; Rao, M. M.
Phytochemistry 1986, 25, 533.
2. Jarvis, B. B.; Comezoglu, S. N.; Rao, M. M.; Pena, N. B.
J. Org. Chem. 1997, 52, 45.
3. Bonner, W. A.; Burke, N. I.; Fleck, W. E.; Hill, R. K.;
Joule, J. A.; Sjoberg, B.; Zalkow, J. H. Tetrahedron 1964,
20, 1419.
4. Ramadas, S.; Krupadanam, G. L. Tetrahedron: Asymme-
try 2000, 11, 3375.