C O M M U N I C A T I O N S
Table 1. O2 Binding Parameters and Autoxidation Rate Constants
for Native and Reconstituted Myoglobins
propose that the replacement of the native heme 2 with iron
porphycene 1 dramatically improves the function as detailed above
without any changes in the amino acid sequence of the horse heart
myoglobin. Thus, the modification of the heme framework in the
present study will serve as an effective method for the creation of
a unique functionalized hemoprotein.
myoglobin
k
on (µM-1 s-1 a,b
)
k
off (s-1 a,c
)
KO2 (M-1 d
)
k )
auto (h-1 e
nMb(2)
rMb(1)
22( 1
120 ( 10
27 ( 2
0.11 ( 0.01
8.1 × 105
0.18 ( 0.01
0.026 ( 0.001
1.1 × 109
a Reaction conditions: 100 mM phosphate buffer (pH 7.0) at 25 °C.
b Association process of O2 ligand was measured by a laser flash photolysis
system. c Dissociation rates were measured by a stopped-flow spectropho-
tometry upon the addition of excess amount of ferricyanide. d O2 binding
constants were calculated from the measured kon and koff values. e The rate
of autoxidation was determined by the spectral changes to metmyoglobin
at 37 °C in 100 mM phosphate buffer (pH 7.0).
Acknowledgment. We thank Prof. E. Vogel for his warm
encouragement. This work was supported by the Japan Science and
Technology Corporation (JST), the Ministry of Education, Sports,
Culture, Science and Technology, Japan, and the Mazda Foundation.
Supporting Information Available: Experimental details, mass
spectrum of rMb(1), and kinetic data (PDF). This material is available
rMb(1), 1.1 × 109 M-1, indicating a significant 1400-fold increase
in O2 affinity for rMb(1) relative to that for the native horse heart
myoglobin. The determined binding constant is as high as that of
several oxygen-avid hemoglobins such as Ascaris hemoglobin,23,24
which has special distal Tyr and Gln as strong hydrogen-bonding
donors to stabilize the bound O2, whereas rMb(1) has no trick in
the protein matrix. However, it is noteworthy that the enhancement
of the O2 affinity is mainly derived from a very slow O2 dissociation
both in Ascaris hemoglobin and rMb(1). The reason for the strong
O2 binding to rMb(1) is suggested as follows. According to several
model studies of iron porphyrins without a protein matrix, the O2
off-rate decreases with increasing electron donation of the axial
base ligand, because of the increasing favorable character of the
Fe(III)-O2- charge separation species.25,26 In our case, the observed
lower redox potential of the iron in rMb(1) relative to that in nMb-
(2) supports the fact that the strength of the proximal His93-iron
heme coordination increases and then the charge separation species
is predominant over Fe(II)-O2 complex due to the increasing
π-back-donation to the bound O2.27 Indeed, it is known that an iron
porphycene binds imidazoles more strongly than an iron porphyrin.22
In addition, it is likely that the remarkable charge separation gives
rise to the tight hydrogen-bonding between the negatively charged
oxygen and imidazolyl NH of the distal His64 in rMb(1). Therefore,
the very small rate constant of O2 dissociation for rMb(1) is clearly
explained by the stabilization of the bound O2 via a strong
hydrogen-bonding interaction with His64.28
Next, we investigated the stability of oxy-rMb(1) by monitoring
the autoxidation from oxy-rMb(1) to met-rMb(1) in 100 mM
phosphate buffer, pH 7.0, at 37 °C. The spectral changes in the
Q-band region exhibited clear isosbestic points, and the decay at
621 nm provides the exact first-order kinetics. The rate constants
of two proteins are summarized in Table 1. Interestingly, the
autoxidation of oxy-rMb(1) is 7-fold slower than that of nMb(2).
The significantly slow oxidation will come from the slow dissocia-
tion of the O2 ligand, although the autoxidation mechanism is
complicated. This explanation is supported by previous reports
where the O2 affinity is inversely related to the autoxidation rate
constant.29
References
(1) (a) Springer, B. A.; Sligar, S. G.; Olson, J. S.; Phillips, G. N., Jr. Chem.
ReV. 1994, 94, 699-714. (b) Draghi, F.; Miele, A. E.; Travaglini-
Allocatelli, C.; Vallone, B.; Brunori, M.; Gibson, Q. H.; Olson, J. S. J.
Biol. Chem. 2002, 277, 7509-7519.
(2) Allocatelli, C. T.; Cutruzzola`, F.; Brancaccio, A.; Vallone, B.; Brunori,
M. FEBS Lett. 1994, 352, 63-66.
(3) Turano, P.; Lu, Y. In Handbook on Metalloproteins; Bertini, I., Sigel,
A., Sigel, H., Eds.; Marcel Dekker: New York, 2001; pp 269-356.
(4) Raven, E. L.; Mauk, A. G. In AdVances in Inorganic Chemistry; Sykes,
A. G., Mauk, G., Eds.; Academic Press: San Diego, 2001; Vol. 51, pp
1-51.
(5) Ozaki, S.; Roach, M. P.; Matsui, T.; Watanabe, Y. Acc. Chem. Res. 2001,
34, 818-825.
(6) Hayashi, T.; Hisaeda, Y. Acc. Chem. Res. 2002, 35, 35-43.
(7) DiNello, R. K.; Dolphin, D. H. J. Biol. Chem. 1981, 256, 6903-6912.
(8) Hauksson, J. B.; La Mar, G. N.; Pandey, R. K.; Rezzano, I. N.; Smith, K.
M. J. Am. Chem. Soc. 1990, 112, 8315-8323.
(9) Hunter, C. L.; Lloyd, E.; Eltis, L. D.; Rafferty, S. P.; Lee, H.; Smith, M.;
Mauk, A. G. Biochemistry 1997, 36, 1010-1017.
(10) Hayashi, T.; Hitomi, Y.; Ogoshi, H. J. Am. Chem. Soc. 1998, 120, 4910-
4915.
(11) Heleg-Shabtai, V.; Gabriel, T.; Willner, I. J. Am. Chem. Soc. 1999, 121,
3220-3221.
(12) Hamachi, I.; Shinkai, S. Eur. J. Org. Chem. 1999, 539-549.
(13) Stynes, D. V.; Liu, S.; Marcus, H. Inorg. Chem. 1985, 24, 4335-4338.
(14) Christopher, F., Jr.; Takimura, T.; Sessler, J. L. Abstracts of Papers; 213th
ACS National Meeting, San Francisco, CA; American Chemical Society:
Washington, DC, 1997; INOR-519.
(15) Neya, S.; Hori, H.; Imai, K.; Kawamura-Konishi, Y.; Suzuki, H.; Shiro,
Y.; Iizuka, T.; Funasaki, N. J. Biochem. 1997, 121, 654-660.
(16) Sotiriou-Leventis, C.; Chang, C. K. Inorg. Chim. Acta 2000, 311, 113-
118.
(17) Vogel, E.; Ko¨cher, M.; Schmickler, H.; Lex, J. Angew. Chem., Int. Ed.
Engl. 1986, 25, 257-259.
(18) Sessler, J. L.; Gebauer, A.; Vogel, E. In Porphyrin Handbook; Kadish,
K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2000;
Vol. 2, pp 1-54.
(19) Teale, F. W. J. Biochim. Biophys. Acta 1959, 35, 543.
(20) Sano, S. In The Porphyrins, Dolphin, D., Ed.; Academic Press: New York,
1979; Vol. VII, pp 377-402.
(21) Oertling, W. A.; Wu, W., Lo´pez-Garriga, J. J.; Kim, Y.; Chang, C. K. J.
Am. Chem. Soc. 1991, 113, 127-134.
(22) Bernard, C.; Mest, Y. L.; Gisselbrecht, J. P. Inorg. Chem. 1998, 37, 181-
190.
(23) De Baere, I.; Perutz, M. F.; Kiger, L.; Marden, M. C.; Poyart, C. Proc.
Natl. Acad. Sci. U.S.A. 1994, 91, 1594-1597.
(24) Goldberg, D. E. Chem. ReV. 1999, 99, 3371-3378.
(25) Traylor, T. G.; White, D. K.; Campbell, D. H.; Berzinis, A. P. J. Am.
Chem. Soc. 1981, 103, 4932-4936.
(26) Collman, J. P.; Brauman, J. I.; Iverson, B. L.; Sessler, J. L.; Morris, R.
M.; Gibson, Q. H. J. Am. Chem. Soc. 1983, 105, 3052-3064.
(27) Chang, C. K.; Traylor, T. G. J. Am. Chem. Soc. 1973, 95, 8477-8479.
(28) Our preliminary results suggested that the affinity of rMb(1) for CO is
lower than that observed for O2 by measuring the partition coefficients
between O2 and CO for myoglobins. The result supports the increase in
the strength of the hydrogen-bond between O2 and His64 for rMb(1).
(29) Brantley, R. E., Jr.; Smerdon, S. J.; Wilkinson, A. J.; Singleton, E. W.;
Olson, J. S. J. Biol. Chem. 1993, 268, 6995-7010.
In conclusion, the porphycene myoglobin, rMb(1), demonstrates
a very high oxygen affinity, and the oxy-form is extremely stable
compared with the native protein. Over the past decade, several
groups have prepared a series of myoglobin mutants by a mutagen-
esis approach to improve the physiological function of the myo-
globin. For example, it is known that a L29F mutant of sperm whale
myoglobin shows a 15-fold increase in O2 affinity compared to
that of the native protein.30 In contrast, our results unequivocally
(30) Carver, T. E.; Brantley, R. E., Jr.; Singleton, E. W.; Arduini, R. M.; Quillin,
M. L.; Phillips, G. N., Jr.; Olson, J. S. J. Biol. Chem. 1992, 267,
14443-14450.
JA0265052
9
J. AM. CHEM. SOC. VOL. 124, NO. 38, 2002 11227