pubs.acs.org/joc
antimalarial activities for 1 and 2 are surprisingly approximately
Dihydroxylation of Vinyl Sulfones: Stereoselective
Synthesis of (þ)- and (-)-Febrifugine and
Halofuginone
equal.1 The existence of these C-2 isomers and their comparable
biological activities suggest that isomerization via a retro-con-
jugate-conjugate addition sequence may occur in vivo.4
Although these compounds possess interesting biological pro-
files, possibly via a novel mechanism, and have been used
historically as a herbal remedy, they do have serious side effects
(including nausea, vomiting , and liver toxicity) which have
precluded their use as antimalarial drugs.3 The chemical struc-
tures of 1 and 2 were elucidated in 1950s following studies by
Baker and co-workers.5 However, the precise relative and
absolute stereochemistry has historically caused confusion, and
it was as recently as 1999 that the absolute stereochemistry of
these compounds was finally unambiguously determined by
total synthesis.6 Since 1999 these targets have proved popular
and several successful synthetic strategies toward 1and 2, in both
racemic and enantioselective fashion, have been reported.7
Halofuginone 3 (the active component of tempostatin and
stenorol) is an analogue of 1, in which the metabolically vulner-
able aromatic protons have been replaced.3,8 Stenorol has been
used for more than 2 decades as an antiprotozoal agent in the
poultry industry.9 Issues concerning the optimal dose adminis-
tered to chickens led to the discovery that 3 also inhibits type 1
collagen biosynthesis10 and this observation in turn led to the
Noel P. McLaughlin and Paul Evans*
Centre for Synthesis and Chemical Biology, School of
Chemistry and Chemical Biology, University College Dublin,
Dublin 4, Ireland
Received November 9, 2009
(4) (a) Barringer, D. F., Jr.; Berkelhammer, G.; Carter, S. D.; Goldman,
L.; Lanzilotti, A. E. J. Org. Chem. 1973, 38, 1933. (b) Barringer, D. F., Jr.;
Berkelhammer, G.; Wayne, R. S. J. Org. Chem. 1973, 38, 1937.
(5) Baker, B. R.; Schaub, R. E.; McEvoy, F. J.; Williams, J. H. J. Org.
Chem. 1952, 17, 132 and references cited therein.
(6) Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H.; Kim, H.-S.;
Wataya, Y. J. Org. Chem. 1999, 64, 6833.
The asymmetric dihydroxylation of amino-functionalized
vinyl sulfone 19 has been used for the 3-step preparation of
3-hydroxylpiperidine 24 in 86% enantiomeric excess. This
enantiomerically enriched building block was used then to
synthesize the naturally occurring antimalarial alkaloid feb-
rifugine 1 and its antiangiogenic analogue, halofuginone 3.
(7) For recent syntheses of 1 and 2 see: (a) Katoh, M.; Matsune, R.;
Nagase, H.; Honda, T. Tetrahedron Lett. 2004, 45, 6221. (b) Katoh, M.;
Matsune, R.; Honda, T. Heterocycles 2006, 67, 189. (c) Burgess, L. E.; Gross,
E. K. M.; Jurka, J. Tetrahedron Lett. 1996, 37, 3255. (d) Takeuchi, Y.;
Azuma, K.; Takakura, K.; Abe, H.; Harayama, T. Chem. Commun. 2000,
1643. (e) Takeuchi, Y.; Azuma, K.; Takakura, K.; Abe, H.; Kim, H.-S.;
Wataya, Y.; Harayama, T. Tetrahedron 2001, 57, 1213. (f) Takeuchi, Y.;
Oshige, M.; Azuma, K.; Abe, H.; Harayama, T. Chem. Pharm. Bull. 2005, 53,
868. (g) Taniguchi, T.; Ogasawara, K. Org. Lett. 2000, 2, 3193. (h) Ooi, H.;
Urushibara, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2001, 3,
953. (i) Huang, P.-Q.; Wei, B.-G.; Ruan, Y.-P. Synlett 2003, 1663. (j) Liu, R.-
C.; Huang, W.; Ma, J.-Y.; Wei, B.-G.; Lin, G.-Q. Tetrahedron Lett. 2009, 50,
4046. (k) Michael, J. P.; de Koning, C. B.; Pienaar, D. P. Synlett 2006, 383. (l)
Wee, A. G. H.; Fan, G.-J. Org. Lett. 2008, 10, 3869. (m) Sukemoto, S.;
Oshige, M.; Sato, M.; Mimura, K.-I.; Nishioka, H.; Abe, H.; Harayama, T.;
Takeuchi, Y. Synthesis 2008, 3081. (n) Sieng, B.; Ventura, O. L.; Bellosta, V.;
Cossy, J. Synlett 2008, 1216. (o) Sudhakar, N.; Srinivasulu, G.; Rao, G. S.;
Rao, B. V. Tetrahedron: Asymmetry 2008, 19, 2153. (p) Wijdeven, M. A.; van
den Berg, R. J. F.; Wijtmans, R.; Botman, P. N. M.; Blaauw, R. H.;
Schoemaker, H. E.; van Delft, F. L.; Rutjes, F. P. J. T. Org. Biomol. Chem.
2009, 7, 2976. (q) Chen, W.; Liebeskind, L. S. J. Am. Chem. Soc. 2009, 131,
12546. (r) Ashoorzadeh, A.; Caprio, V. Synlett 2005, 346. (s) Ashoorzadeh,
A.; Archibald, G.; Caprio, V. Tetrahedron 2009, 65, 4671. (t) Emmanuvel, L.;
Kamble, D. A.; Sudalai, A. Tetrahedron: Asymmetry 2009, 20, 84.
(8) (a) Hirai, S.; Kikuchi, H.; Kim, H.-S.; Begum, K.; Wataya, Y.;
Tasaka, H.; Miyazawa, Y.; Yamamoto, K.; Oshima, Y. J. Med. Chem.
2003, 46, 4351. (b) Zhu, S.; Zhang, Q.; Gudise, C.; Wei, L.; Smith, E.; Zeng,
Y. Bioorg. Med. Chem. 2009, 17, 4496. (c) Zhu, S.; Meng, L.; Zhang, Q.; Wei,
L. Bioorg. Med. Chem. Lett. 2006, 16, 1854. (d) Kikuchi, H.; Yamamoto, K.;
Horoiwa, S.; Hirai, S.; Kasahara, R.; Hariguchi, N.; Matsumoto, M.;
Oshima, Y. J. Med. Chem. 2006, 49, 4698. (e) Linder, M. R.; Heckeroth,
A. R.; Najdrowski, M.; Daugschies, A.; Schollmeyer, D.; Miculka, C.
Bioorg. Med. Chem. Lett. 2007, 17, 4140.
Febrifugine 1 and its isomer isofebrifugine 2 (Figure 1) were
isolated from a Chinese medicinal plant, chang shan (Dichroa
febrifuga), and were later found to be present in a popular garden
plant, hydrangea.1 Decoctions of chang shan have been used for
over 2000 years for the treatment of a variety of aliments
including stomach cancer and malaria.2 More recently it has
been shown that both 1 and 2 exhibit potent antimalarial activity
in their own right in several models of this disease, which has
been estimated to affect between 300 million and 500 million
people each year.2,3 Currently the mode by which these com-
pounds elicit their activity is unknown2 and interestingly, the
(1) (a) Koepfli, J. B.; Mead, J. F.; Brockman, J. A., Jr. J. Am. Chem. Soc.
1947, 69, 1837. (b) Kuehl, F. A., Jr.; Spencer, C. F.; Folkers, K. J. Am. Chem.
Soc. 1948, 70, 2091. (c) Koepfli, J. B.; Mead, J. F.; Brockman, J. A., Jr. J. Am.
Chem. Soc. 1949, 71, 1048. (d) Koepfli, J. B.; Brockman, J. A., Jr.; Moffat, J.
J. Am. Chem. Soc. 1950, 72 3323. (e) Ablondi, F.; Gordon, S.; Morton, J., II;
Williams, J. H. J. Org. Chem. 1952, 17, 14.
(2) (a) Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. Angew. Chem.,
Int. Ed. 2003, 42, 5274. (b) Mital, A. Curr. Med. Chem. 2007, 14, 759.
(c) Kumar, V.; Mahajan, A.; Chibale, K. Bioorg. Med. Chem. 2009, 17, 2236.
(3) Jiang, S.; Zeng, Q.; Gettayacamin, M.; Tungtaeng, A.; Wannaying, S.;
Lim, A.; Hansukjariya, P.; Okunji, C. O.; Zhu, S.; Fang, D. Antimicrob.
Agents Chemother. 2005, 49, 1169.
(9) (a) Angel, S.; Weinberg, Z. G.; Polishuk, O.; Heit, M.; Plavnik;
Bartov, I. Poultry Sci. 1985, 64, 294–296. (b) Granot, I.; Bartov, I.; Plavnik,
I.; Wax, E.; Hurwitz, S.; Pines, M. Poultry Sci. 1991, 70, 1559.
(10) Yee, K. O.; Connolly, C. M.; Pines, M.; Lawler, J. Cancer Biology
Therapy 2006, 5, 218.
518 J. Org. Chem. 2010, 75, 518–521
Published on Web 12/09/2009
DOI: 10.1021/jo902396m
r
2009 American Chemical Society