Wang et al.
philic epoxides with tertiary and quaternary stereo-
centers.5-9 Most of the syntheses reported to date are
multistep ones either using a chiral auxiliary5 or starting
from Sharpless asymmetric epoxidation of allylic alcohols
followed by oxidation of the hydroxy group to the car-
bonyl.6 Highly enantioselective Darzens reaction of a
camphor-derived sulfonium amide7 and catalytic asym-
metric epoxidation of R,â-unsaturated amides8 have been
reported very recently to provide highly enantiopure
oxiranecarboxamides, but neither method gave quater-
nary carbon-centered epoxide analogues. In the presence
of benzylquininium chloride, epoxidation of 2-substituted
1,4-naphthoquinones yielded optically active 2,3-epoxides
with enantiomeric excess values less than 45%.9
Biotransformations of nitriles, either through a direct
conversion from a nitrile to a carboxylic acid catalyzed
by a nitrilase10 or through the nitrile hydratase catalyzed
hydration of a nitrile followed by amide hydrolysis
catalyzed by amidase,11 are an effective and environmen-
tally benign method for the production of carboxylic acids
and their amide derivatives.12 Recent studies have dem-
onstrated that biotransformations of nitriles complement
the existing asymmetric chemical and enzymatic methods
for the synthesis of chiral carboxylic acids and their
derivatives.13,14 The distinct features of enzymatic trans-
formations of nitriles are the formation of enantiopure
carboxylic acids and the straightforward generation of
enantiopure amides, which are valuable organonitrogen
compounds in synthetic chemistry. Very recently, we
have shown that Rhodococcus sp. AJ270,15 a whole-cell
catalyst that contains nitrile hydratase/amidase, is able
to efficiently and enantioselectively transform cyclo-
propanecarbonitriles16 and oxiranecarbonitriles17 into the
corresponding carboxylic acids and amides. A prediction
model for reaction efficiency and enantioselectivity has
also been proposed.16f To further explore the synthetic
potential of the nitrile biotransformations catalyzed by
Rhodococcus sp. AJ270 and to validate the prediction
model for the three-membered substrates, we undertook
the current study. In this paper we report an efficient
and convenient synthesis of enantiopure oxiranecarbox-
amides with tertiary and quaternary stereocenters and
their applications in the synthesis of R-methylated R-
hydroxycarboxylic acid and R-methylated serine and
isoserine derivatives.
Results and Discussion
We first examined the reaction of racemic trans-2-
methyl-3-phenyloxiranecarbonitrile 1a. Catalyzed by the
Rhodococcus sp. AJ270 microbial whole-cell catalyst
under very mild conditions, nitrile 1a was very rapidly
and effectively hydrolyzed. For example, more than 50%
of the nitrile 1a was hydrated within 5 min and a
complete hydration was effected in about 30 min (entries
1 and 2 in Table 1). The enantiomeric excess (ee) values
obtained for both the amide 2a and the recovered nitrile
1a were extremely low (5%) after 50% hydration (entry
1 in Table 1), indicating that the nitrile hydratase
involved in this microbial cell catalyst shows very low
enantioselectivity against trans-2-methyl-3-phenyl-
oxiranecarbonitrile. Although the subsequent amide hy-
drolysis was slower than the nitrile hydration, the
amidase involved in Rhodococcus sp. AJ270 cells cata-
lyzed the biohydrolysis of the resulting amide in a few
hours to produce the corresponding enantiomerically pure
2R,3S-2-methyl-3-phenyloxiranecarboxamide (-)-2a in
excellent yield (entry 3 in Table 1) and 2S,3R-2-methyl-
3-phenyloxiranecarboxylic acid 3a, with the latter being
not isolable because it underwent a spontaneous decom-
position similar to that of its 2S,3R-2-phenylglycidic acid
analogue17 to form benzyl methyl ketone under the
reaction conditions (Scheme 1). To shed further light on
the stereochemistry of the reaction, we then investi-
gated the biotransformation of racemic trans-2-methyl-
3-phenyloxiranecarboxamide 2a under the identical con-
ditions. It was found that (()-2a was resolved after 7.5
h into optically active 2R,3S-2-methyl-3-phenyloxirane-
carboxamide (-)-2a in 44% yield with 81% ee. Again, no
(14) For recent examples, see: (a) Wang, M.-X.; Lin, S.-J.; Liu, J.;
Zheng, Q.-Y. Adv. Synth. Catal. 2004, 346, 439. (b) Wang, M.-X.; Lin,
S.-J. J. Org. Chem. 2002, 67, 6542. (c) Wang, M.-X.; Zhao, S.-M.
Tetrahedron Lett. 2002, 43, 6617. (d) Wang, M.-X.; Zhao, S.-M.
Tetrahedron: Asymmetry 2002, 13, 1695. (e) Wang, M.-X.; Li, J.-J.;
Ji, G.-J.; Li, J.-S. J. Mol. Catal. B: Enzymol. 2001, 14, 77. (f) Wang,
M.-X.; Lin, S.-J. Tetrahedron Lett. 2001, 42, 6925. (g) Wang, M.-X.;
Liu, C.-S.; Li, J.-S. Tetrahedron: Asymmetry 2001, 12, 3367. (h) Wang,
M.-X.; Lu, G.; Ji, G.-J.; Huang, Z.-T.; Meth-Cohn, O.; Colby, J.
Tetrahedron: Asymmetry 2000, 11, 1123. (i) Wang, M.-X.; Liu, C.-S.;
Li, J.-S.; Meth-Cohn, O. Tetrahedron Lett. 2000, 41, 8549. (j) DeSantis,
G.; Zhu, Z.; Greenberg, W. A.; Wong, K.; Chaplin, J.; Hanson, S. R.;
Farwell, B.; Nicholson, L. W.; Rand, C. L.; Weiner, D. P.; Robertson,
D. E.; Burk, M. J. J. Am. Chem. Soc. 2002, 124, 9024. (k) Wu, Z.-L.;
Li, Z.-Y. Chem. Commun. 2003, 386. (l) Effenberger, F.; Osswald, S.
Tetrahedron: Asymmetry 2001, 12, 279. (m) Hann, E. C.; Sigmund,
A. E.; Fager, S. K.; Cooling, F. B.; Gavagan, J. E.; Ben-Bassat, A.;
Chauhan, S.; Payne, M. S.; Hennessey, S. M.; DiCosimo, R. Adv. Synth.
Catal. 2003, 345, 775. (n) Wu, Z.-L.; Li, Z.-Y. J. Mol. Catal. B: Enzymol.
2003, 22, 105. (o) Preiml, M.; Hillmayer, K.; Klempier, N. Tetrahedron
Lett. 2003, 44, 5057. (p) Yokoyama, M.; Kashiwagi, M.; Iwasaki, M.;
Fushuku, K.; Ohta, H.; Sugai, T. Tetrahedron: Asymmetry 2004, 15,
2817.
(5) (a) Adam, W.; Pastor, A.; Peters, K.; Peters, E.-M. Org. Lett. 2000,
8, 1019. (b) Ruano, J. L. G.; Castro, A. M. M.; Ramos, J. H. R.;
Flamarique, A. C. R. Tetrahedron: Asymmetry 1997, 8, 3503. (c) Torres-
Valencia, J. M.; Cerda-Garcia-Rojas, C. M.; Joseph-Nathan, P. Tetra-
hedron: Asymmetry 1998, 9, 757. (d) Hayashi, M.; Terashima, S.; Koga,
K. Tetrahedron 1981, 37, 2797.
(6) For representative examples, see: (a) Jung, M. E.; Anderson,
K. L. Tetrahedron Lett. 1997, 38, 2605. (b) Jung, M. E.; D’Amico, D.
C. J. Am. Chem. Soc. 1995, 117, 7379. (c) Marshall, J. A.; Trometer,
J. D.; Blough, B. E.; Crute, T. D. J. Org. Chem. 1988, 53, 4274. (d)
Molander, G. A.; Shubert, D. C. J. Am. Chem. Soc. 1987, 109, 576 and
references therein.
(7) Aggarwal, V. K.; Hynd, G.; Picoul, W.; Vasse, J.-L. J. Am. Chem.
Soc. 2002, 124, 9964.
(8) (a) Nemoto, T.; Kakei, H.; Gnanadesikan, V.; Tosaki, S.-y.;
Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2002, 124, 14544. (b)
Kakei, H.; Nemoto, T.; Ohshima, T.; Shibasaki, M. Angew. Chem., Int.
Ed. 2004, 43, 317.
(9) Pluim, H.; Wynberg, H. J. Org. Chem. 1980, 45, 2498.
(10) Kobayashi, M.; Shimizu, S. FEMS Microbiol. Lett. 1994, 120,
217 and references therein.
(15) Blakey, A. J.; Colby, J.; Williams, E.; O’Reilly, C. FEMS
Microbiol. Lett. 1995, 129, 57.
(16) (a) Wang, M.-X.; Feng, G.-Q. Tetrahedron Lett. 2000, 41, 6501.
(b) Wang, M.-X.; Feng, G.-Q. New J. Chem. 2002, 1575. (c) Wang, M.-
X.; Feng, G.-Q. J. Org. Chem. 2003, 68, 621-624. (d) Wang, M.-X.;
Feng, G. Q. J. Mol. Catal. B: Enzymol. 2002, 18, 267. (e) Wang, M.-
X.; Feng, G.-Q.; Zheng, Q.-Y. Adv. Synth. Catal. 2003, 345, 695. (f)
Wang, M.-X.; Feng, G.-Q.; Zheng, Q.-Y. Tetrahedron: Asymmetry 2004,
15, 347.
(11) (a) Meth-Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin Trans.
1 1997, 1099. (b) Meth-Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin
Trans. 1 1997, 3197 and references therein.
(12) Nagasawa, T.; Schimizu, H.; Yamada, H. Appl. Microbiol.
Biotechnol. 1993, 40, 189.
(13) For reviews, see: (a) Sugai, T.; Yamazaki, T.; Yokoyama, M.;
Ohta, H. Biosci. Biotechnol. Biochem. 1997, 61, 1419 and references
therein. (b) Martinkova, L.; Kren, V. Biocatal. Biotrans. 2002, 20, 73.
(17) Wang, M.-X.; Lin, S.-J.; Liu, C.-S.; Zheng, Q.-Y.; Li, J.-S. J. Org.
Chem. 2003, 68, 4570.
2440 J. Org. Chem., Vol. 70, No. 7, 2005