Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC04154J
COMMUNICATION
Journal Name
6
7
8
N. W. Sach, D. T. Richter, S. Cripps, M. Tran-Dubé, H. Zhu, B.
Huang, J. Cui and S. C. Sutton, Org. Lett., 2012, 14, 3886.
X. Shen, C. N. Neumann, C. Kleinlein, N. W. Goldberg and T.
Ritter, Angew. Chem., Int. Ed., 2015, 54, 5662.
For selected reviews, see: (a) M. N. Hopkinson, C. Richter, M.
Schedler and F. Glorius, Nature, 2014, 510, 485; (b) F. E.
the partial racemization of the product with 81% inversion
(54% ee). These results suggest the reaction mechanism in
Scheme 6. The NHC reacts with the alcohol to generate alcohol
adduct
II by
mono anion of
I
, which is subsequently oxidized into triazolium cation
through the hydride transfer. The generated bulky
2’) can deprotonate 2-cyanophenol. The
2
Hahn and M. C. Jahnke, Angew. Chem. Int. Ed., 2008, 47
,
2
(
3122; (c) D. M. Flanigan, F. Romanov-Michailidis, N. A. White
and T. Rovis, Chem. Rev., 2015, 115, 9307.
resulting phenoxide reacts with II in the SN2 fashion in toluene
to give the stereo-inverted condensation product together
with the stable NHC oxide. This SN2 process is quite similar to
the final step of a typical Mitsunobu reaction, where the
phosphonium undergoes the nucleophilic attack (Scheme 1a).
The polar solvent acetonitrile causes the cleavage of the O-C
bond of intermediate II to some extent to generate benzyl
cation III and the NHC oxide. The SN1 reaction of 2-
cyanophenol with III affords the racemized product.
9
For recent reviews, see: (a) V. Nair, R. S. Menon, A. T. Biju, C.
R. Sinu, R. R. Paul, A. Jose and V. Sreekumar, Chem. Soc. Rev.,
2011, 40, 5336; (b) X. Bugaut and F. Glorius, Chem. Soc. Rev.,
2012, 41, 3511; (c) H. U. Vora, P. Wheeler and T. Rovis, Adv.
Synth. Catal., 2012, 354, 1617; (d) A. Grossmann and D.
Enders, Angew. Chem., Int. Ed., 2012, 51, 314; (e) R. S.
Menon, A. T. Biju and V. Nair, Chem. Soc. Rev., 2015, 44
,
5040; (f) S. R. Yetra, A. Patra and A. T. Biju, Synthesis, 2015,
47, 1357.
10 For reviews, see: (a) X.-Y. Chen and S. Ye, Org. Biomol.
Chem., 2013, 11, 7991; (b) S. Matsuoka, Polym. J., 2015, 47
713. For selected examples, see: (c) C. Fischer, S. W. Smith,
In conclusion, we have developed a Mitsunobu-type redox
condensation of primary and secondly alcohols with various
phenols, carboxylic acids and phthalimide by the redox couple
of 1,2,4-triazol-5-ylidene NHCs and oxidants. The reaction
mechanism uniquely involves the oxidation and nucleophilic
substitution20 processes. In contrast to the classical Mitsunobu
reaction, 1) the reducing reagents, NHCs, act as a Brønsted
,
D. A. Powell and G. C. Fu, J. Am. Chem. Soc., 2006, 128, 1472;
(d) S. Matsuoka, Y. Ota, A. Washio, A. Katada, K. Ichioka, K.
Takagi and M. Suzuki, Org. Lett., 2011, 13, 3722; (e) A. T. Biju,
M. Padmanaban, N. E. Wurz and F. Glorius, Angew. Chem.,
Int. Ed., 2011, 50, 8412; (f) S. Matsuoka, S. Namera, A.
Washio, K. Takagi and M. Suzuki, Org. Lett., 2013, 15, 5916;
(g) T. Kato, S. Matsuoka and M. Suzuki, J. Org. Chem., 2014,
79, 4484; (h) O.-a. Rajachan, M. Paul, V. R. Yatham, J.-M.
Neudörfl, K. Kanokmedhakul, S. Kanokmedhakul, A.
base, 2)
a
wider range of oxidants, such as an
azodicarboxylate, a diphenoquinone, and TEMPO, can be used,
and 3) the byproducts, NHC oxides, are more readily removed.
Following our previous report,17 this is the second example in
which the NHCs work as the reduction agent. We believe that
NHC has further potential as a useful alternative in various
redox reactions.
Berkessel, Tetrahedron Lett., 2015, 56, 6537; (i) M. Schedler,
N. E. Wurz, C. G. Daniliuc and F. Glorius, Org. Lett., 2014, 16
3134; (j) S. Matsuoka, M. Nakazawa and M. Suzuki, Bull.
Chem. Soc. Jpn., 2015, 88, 1093; (k) Y. Nakano and D. W.
Lupton, Angew. Chem. Int. Ed., 2016, 55, 3135.
,
11 For a review, see: S. De Sarkar, A. Biswas, R. C. Samanta and
A. Studer, Chem. Eur. J., 2013, 19, 4664.
12 B. Lachmann and H.-W. Wanzlick, Liebigs Ann. Chem., 1969,
729, 27.
13 (a) D. Enders, K. Breuer, G. Raabe, J. Runsink, J. H. Teles, J.-P.
Melder, K. Ebel and S. Brode, Angew. Chem., Int. Ed., 1995,
34, 1021; (b) D. Enders, K. Breuer, J. Runsink and J. H. Teles,
Liebigs Ann., 1996, 2019.
Notes and references
1
(a) O. Mitsunobu, M. Yamada and T. Mukaiyama, Bull. Chem.
Soc. Jpn., 1967, 40, 935; (b) O. Mitsunobu and M. Yamada,
Bull. Chem. Soc. Jpn., 1967, 40, 2380; For recent reviews,
see: (c) R. Dembinski, Eur. J. Org. Chem. 2004, 2763; (d) T. Y.
S. But and P. H. Toy, Chem. Asian. J., 2007, 2, 1340; (e) K. C.
K. Swamy, N. N. B. Khumar, E. Balaraman, K. V. P. P. Kumar,
Chem. Rev., 2009, 109, 2551; (f) S. Fletcher, Org. Chem.
Front., 2015, 2, 739.
14 For reviews, see: (a) S. J. Ryan, L. Candish and D. W. Lupton,
Chem. Soc. Rev., 2013, 42, 4906; (b) S. Naumann and M. R.
Buchmeiser, Catal. Sci. Technol., 2014,
examples, see: (c) M. Movassaghi and M. A. Schmidt, Org.
Lett., 2005, , 2453; (d) S. Naumann, F. G. Schmidt, W. Frey
and M. R. Buchmeiser, Polym. Chem., 2013, , 4172.
4, 2466. For selected
2
3
For a review, see: T. Mukaiyama, Angew. Chem. Int. Ed.,
2004, 43, 5590.
For selected examples of the modified azodicarbonyl species,
see: (a) S. Dandapani and D. P. Curran, Tetrahedron, 2002,
58, 3855; (b) T. Tsunoda, Y. Yamamiya and S. Itô,
Tetrahedron Lett., 1993, 34, 1639; (c) B. H. Lipshutz, D. W.
7
4
15 For selected examples, see: (a) E. F. Connor, G. W. Nyce, M.
Myers, A. Möck and J. L. Hedrick, J. Am. Chem. Soc., 2002,
124, 914; (b) G. A. Grasa, R. M. Kissling and S. P. Nolan, Org.
Lett., 2002, 4, 3583.
Chung, B. Rich and R. Corral, Org. Lett., 2006, 8, 5069; (d) T.
16 (a) E. M. Phillips, M. Riedrich, K. A. Scheidt, J. Am. Chem.
Soc., 2010, 132, 13179; (b) W. N. Ottou, D. Bourichon, J.
Vignolle, A.-L. Wirotius, F. Robert, Y. Landais, J.-M.
Sotiropoulos, K. Miqueu and D. Taton, Chem. Eur. J., 2015,
21, 9447.
Tsunoda, M. Nagaku, C. Nagino, Y. Kawamura, F. Ozaki, H.
Hioki and S. Itô, Tetrahedron Lett., 1995, 36, 2531; For
selected examples of the modified phosphine species, see (e)
G. Grynkiewicz, J. Jurczak and A. Zamojski, Tetrahedron,
1975, 31, 1411; (f) I. A. O'Neil, S. Thompson, C. L. Murray and
S. B. Kalindjian, Tetrahedron Lett., 1998, 39, 7787; (g) X.
Tang, C. Chapman, M. Whiting and R. Denton, Chem.
Commun. 2014, 50, 7340.
17 T. Kato, S. Matsuoka and M. Suzuki, Chem. Commun., 2015,
51, 13906.
18 R. A. Altman, A. Shafir, A. Choi, P. A. Lichtor and S. L.
Buchwald, J. Org. Chem., 2008, 73, 284.
19 G. Mann and J. F. Hartwig J. Am. Chem. Soc., 1996, 118
4
5
(a) T. Y. S. But and P. H. Toy, J. Am. Chem. Soc. 2006, 128,
,
9636; (b) D. Hirose, T. Taniguchi and H. Ishibashi, Angew.
Chem. Int. Ed., 2013, 52, 4613; (c) J. A. Buonomo and C. C.
Aldrich, Angew. Chem. Int. Ed. 2015, 54, 13041.
(a) T. Mukaiyama, T. Shintou and K. Fukumoto, J. Am. Chem.
Soc. 2003, 125, 10538; (b) T. Shintou and T. Mukaiyama, J.
Am. Chem. Soc., 2004, 126, 7359.
13109.
20 For the similar nucleophilic aromatic substitution, see: P.
Tang, W. Wang and T. Ritter, J. Am. Chem. Soc., 2011, 133
11482.
,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins