234
R. G. Wei et al. / Bioorg. Med. Chem. Lett. 17 (2007) 231–234
2004, 14, 947; (f) Shankaran, K.; Donnelly, K. L.; Shah, S.
K.; Guthikonda, R. N.; MacCoss, M.; Mills, S. G.; Gould,
S. L.; Malkowitz, L.; Siciliano, S. J.; Springer, M. S.;
Carella, A.; Garver, G.; Hazuda, D.; Holmes, K.; Kessler,
J.; Lineberger, J.; Miller, M. D.; Emini, E. A.; Schleif, W.
A. Bioorg. Med. Chem. Lett. 2004, 14, 3419; (g) Ginesta, J.
B.; Castaner, J.; Bozzo, J.; Bayes, M. Drugs Future 2005,
30, 469; (h) McComie, S. W.; Tagat, J. R.; Vice, S. F.; Lin,
S.-I.; Steensma, R.; Palani, A.; Neustadt, B. R.; Baroudy,
B. M.; Strizki, J. M.; Endres, M.; Cox, K.; Dan, N.; Chou,
C.-C. Bioorg. Med. Chem. Lett. 2003, 13, 567; (i) Song, M.;
Breneman, C. M.; Sukumar, N. Bioorg. Med. Chem. 2004,
12, 489; (j) Tagat, J. R.; McComie, S. W.; Nazareno, D.;
Labroli, M. A.; Xiao, Y.; Steensma, R. W.; Cox, K.;
Lachowicz, J.; Varty, G.; Watkins, R. J. Med. Chem. 2004,
47, 2405; (k) Seto, M.; Miyamoto, N.; Aikawa, K.;
Aramaki, Y.; Kanzaki, N.; Iizawa, Y.; Baba, M.; Shiraishi,
M. Bioorg. Med. Chem. 2005, 13, 363; (l) Imamura, S.;
Nishikawa, Y.; Ichikawa, T.; Hattori, T.; Matsushita, Y.;
Hashiguchi, S.; Kanzaki, N.; Iizawa, Y.; Baba, M.;
Sugihara, Y. Bioorg. Med. Chem. 2005, 13, 397; (m) Shah,
S. K.; Chen, N.; Guthikonda, R. N.; Mills, S. G.;
Malkowitz, L.; Springer, M. S.; Gould, S. L.; DeMartino,
J. A.; Carella, A.; Carver, G.; Holmes, K.; Schleif, W. A.;
Danzeisen, R.; Hazuda, D.; Kessler, J.; Lineberger, J.;
Miller, M.; Emini, E. A.; MacCoss, M. Bioorg. Med. Chem.
Lett. 2005, 15, 977; (n) Thoma, G.; Nuninger, F.; Schaefer,
M.; Akyel, K. G.; Albert, R.; Beerli, C.; Bruns, C.;
Francotte, E.; Luyten, M.; MacKenzie, D.; Oberer, L.;
Streiff, M. B.; Wagner, T.; Walter, H.; Weckbecker, G.;
Zerwes, H.-G. J. Med. Chem. 2004, 47, 1939; (o) Kim, D.;
Wang, L.; Hale, J. J.; Lynch, C. L.; Budhu, R. J.; MacCoss,
M.; Kills, S. G.; Malkowitz, L.; Gould, S. L.; DeMartino, J.
A.; Springer, M. S.; Hazuda, D.; Miller, M.; Kessler, J.;
Hrin, R. C.; Carver, G.; Carella, A.; Henry, K.; Lineberger,
J.; Schleif, W. A.; Emini, E. A. Bioorg. Med. Chem. Lett.
2005, 15, 2129; (p) Burrows, J. N.; Cumming, J. G.; Fillery,
S. M.; Hamlin, G. A.; Hudson, J. A.; Jacson, R. J.;
McLaughlin, S.; Shaw, J. S. Bioorg. Med. Chem. Lett. 2005,
15, 25.
similar to compound 1. Based upon these results, it was
clear that the presence of the guanylhydrazone group is
not necessary for inhibitory activity and that this posi-
tion of the molecule is amenable to further optimization
efforts.
In conclusion, modification and optimization of the var-
ious groups of the initial HTS lead compound 1 led to
the discovery of a new series of CCR5 antagonists. It
was found that the guanylhydrazone moiety itself was
not required for CCR5 antagonistic potency as suitable
substitutions could be identified. Further investigations
to improve the potency and explore the PK profile of
novel CCR5 antagonists based upon compound 45 from
this series will be reported in due course.
Acknowledgments
The authors thank Dr. Jerry Dallas for structural elucida-
tion of compound 37E and 37Z using 13C NMR and Dr.
John Bauman for helpful suggestions and discussion.
References and notes
1. D’Souza, M. P.; Harden, V. A. Nat. Med. 1996, 2, 1293.
2. (a) Palani, A.; Shapiro, S.; Clader, J. W.; Greenlee, W. J.;
Vice, S.; McCombie, S.; Cox, K.; Strizki, J.; Baroudy, B. M.
Bioorg. Med. Chem. Lett. 2003, 13, 709; (b) Tagat, J.;
McCombie,S.; Nazareno, D.; Steensma, R.; Labroli, M.;
Baroudy, B.; Strizki, J.; Cox, K. Abstracts of Papers, 225th
ACS National Meeting, New Orleans, LA, March 23–27,
2003, American Chemical Society: Washington, DC, 2003;
MEDI 15; (c) Shen, D.-M.; Shu, M.; Mills, S. G.;
Chapman, K. T.; Malkowitz, L.; Springer, M. S.; Gould,
S. L.; DeMartino, J. A.; Siciliano, S. J.; Kwei, G. Y.;
Carella, A.; Carver, G.; Holmes, K.; Schleif, W. A.;
Danzeisen, R.; Hazuda, D.; Kessler, J.; Lineberger, J.;
Miller, M. D.; Emini, E. A. Bioorg. Med. Chem. Lett. 2004,
14, 935; (d) Shen, D.-M.; Shu, M.; Willoughby, C. A.;
Shah, S.; Lynch, C. L.; Hale, J. J.; Mills, S. G.; Chapman,
K. T.; Malkowitz, L.; Springer, M. S.; Gould, S. L.;
DeMartino, J. A.; Siciliano, S. J.; Lyons, K.; Pivinichny, J.
V.; Kwei, G. Y.; Carella, A.; Carver, G.; Holmes, K.;
Schleif, W. A.; Danzeisen, R.; Hazuda, D.; Kessler, J.;
Lineberger, J.; Miller, M. D.; Emini, E. A. Bioorg. Med.
Chem. Lett. 2004, 14, 941; (e) Shu, M.; Loebach, J. L.;
Parker, K. A.; Mills, S. G.; Chapman, K. L.; Shen, D.-M.;
Malkowitz, L.; Springer, M. S.; Gould, S. L.; DeMartino, J.
A.; Siciliano, S. J.; Salvo, J. D.; Lyons, K.; Pivnichny, J. V.;
Kwei, G. Y.; Carella, A.; Carver, G.; Holmes, K.; Schleif,
W. A.; Danzeisen, R.; Hazuda, D.; Kessler, J.; Lineberger,
J.; Miller, M. D.; Emini, E. A. Bioorg. Med. Chem. Lett.
3. Kesicki, E. A.; Odingo, J. O.; Oliver, A. R.; Orme, M. W.;
Schweickart, V. L.; Epp, A.; Gary, P. W.; Fowler, K. W.
Abstracts of Papers, 221st ACS National Meeting, San
Diego, CA, April 1–5, 2001, American Chemical Society:
Washington, DC, 2001; MEDI 109.
´
}
4. Gyo¨rgydeak, Z.; Holzer, W.; Mereiter, K. Monatshefte fur
Chemie 1999, 899.
5. 37E and 37Z was separated by HPLC with solvent A, 0.1%
TFA in H2O; solvent B, 0.1% TFA in MeCN as eluents.
The configuration of 37E and 37Z isomer could be clearly
deduced by the comparison of their 13C chemical shifts,
specifically the methyl carbon atom. The 13C chemical shift
(d = 18.0 ppm) of the methyl carbon atom in 37E is upfield
(d = 24.4 ppm) of the methyl carbon atom in 37Z. These
data were consistent with those from reference 4.
6. Rosenkilde, M. M.; Schwartz, T. W. Curr. Trends Med.
Chem. 2006, 6, 1319.