C O M M U N I C A T I O N S
mutant p53 by other mechanisms such as directing p53 to the
mitochondria14 or by blocking its gain-of-function activity, which
protects against cell death.15 Future studies will be needed to
determine whether mutant p53 is the actual target.
Acknowledgment. We gratefully acknowledge financial sup-
port from DHHS, NIH, NIDDK, and Northwestern University;
NIH/NCI grants CA63230 and CA71907 (G.P.Z.), NIH/NCI Cancer
Center Support CORE Grant CA21765, and the American Lebanese
Syrian Associated Charities of St. Jude Children’s Research Hospital
(ALSAC).
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. Cellular assay procedure
and data (PDF). This material is available free of charge via the Internet
Figure 2. Cellular assay with Saos-2 cells expressing no p53 (control) or
mutant p53 at positions 175 and 281 with 50 µM of compound 7 (PRIMA-1
induces similar results at 75 µM). Each panel represents the same
magnification (20×).
References
to gain some insight into SAR for this series of molecules (Table
1).11 While molecules 11-17 did not possess any ability to
selectively arrest growth of cells expressing mutant p53, the results
of these studies point to the importance of the phenyl group and a
primary amine as essential features for the desired biological
activity. If the phenyl ketone of 7 is changed to a methyl ester
(14), morpholine amide (15), or even ethyl ketone (13), the de-
sired activity is lost. Furthermore, attaching a methyl group to the
nitrogen of 7 (molecule 16) or a methyl group to the R-carbon of
7 (molecule 17) eliminates the desired activity and in some cases
results in nonspecific toxicity.
(1) Lane D. P.; Fischer, P. M. Nature 2004, 427, 789-790.
(2) (a) Harris, C. C. Carcinogenesis 1996, 17, 1187-1198. (b) Ribeiro, R.
C.; Sandrini, F.; Figueiredo, B.; Zambetti, G. P.; Michalkiewicz, E.;
Lafferty, A. R.; DeLacerda, L.; Rabin, M.; Cadwell, C.; Sampaio, G.;
Cat, I.; Stratakis, C. A.; Sandrini, R. Proc. Natl. Acad. Sci. U.S.A. 2001,
98, 9330-9335. (c) Han, J. W.; Flemington, C.; Houghton, A. B.; Gu,
Z.; Zambetti, G. P.; Lutz, R. J.; Zhu, L.; Chittenden, T. Proc. Natl. Acad.
Sci. U.S.A. 2001, 98, 11318-11323. (d) Joerger, A. C.; Allen, M. D.;
Fersht, A. R. J. Biol. Chem. 2004, 279, 1291-1296. (e) Vassilev, L. T.;
Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.;
Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E. A. Science 2004,
303, 844-848.
(3) Reed, J. C. Cancer Cell 2003, 3, 17-22.
(4) Vogelstein, B.; Lane, D.; Levine, A. J. Nature 2000, 408, 307-310.
(5) DeDecker, B. S. Chem. Biol. 2000, 7, 103-107.
On the basis of the previous results, modifications to the phenyl
ring were explored for effects on the desired biological activity.
Therefore, molecules 43-46 were synthesized to test whether
electron donating, withdrawing, or sterics on the aromatic ring affect
the biological activity. From these data, an electron-withdrawing
fluorine group raises the nonspecific cytotoxicity. On the other hand,
an electron-releasing methoxy group and a naphthyl group result
in loss of activity. A methyl group retains activity, although the
optimal concentration is higher compared to that of molecule 7.
Along with our new molecules, the activity of PRIMA-1 was
compared in the same assays.11 Although our active compounds,
as well as PRIMA-1, selectively eliminated cells expressing mutant
p53, we have been unable to detect any evidence of restoration of
wild-type p53 properties, including induced expression of an
artificial p53-responsive promoter-reporter, or endogenous target
genes (e.g., p21CIP1, HDM2), or the reestablishment of the wild-
type conformation in vitro.
In support of our findings, recent data by Wiman and co-workers
demonstrated that a derivative of PRIMA-1 (PRIMA-1MET), which
is twice as effective as the parental compound, does not significantly
alter mutant p53 protein levels, p53 post-translational modification
(which is thought to be a prerequisite for its activity), or the
induction of BAX, a p53 target gene.12 However, PRIMA-1MET was
found to upregulate the expression of PUMA, a BH3-only pro-
apoptotic factor. It is well-established that PUMA expression is
regulated in a p53-dependent and -independent manner.13 These
findings raise the issue of whether PRIMA-1 and our compounds
directly restore wild-type activity to mutant p53. It remains a formal
possibility that these molecules selectively target cells expressing
(6) (a) Sugikawa, E.; Hosoi T.; Yazaki, N.; Gamanuma, M.; Nakanishi, N.;
Ohashi, M. Anticancer Res. 1999, 19, 3099-3108. (b) Friedler, A.;
Hansson, L. O.; Veprintsev, D. B.; Freund, S. M. V.; Rippin, T. M.;
Nikolova, P. V.; Proctor, M. R.; Rudiger, S.; Fersht, A. R. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 937-942. (c) North, S.; Pluquet, O.; Maurici,
D.; Ghissassi, F. E.; Hainaut, P. Mol. Carcinog. 2002, 33, 181-188. (d)
Peng, Y.; Li, C.; Chen, L.; Sebti, S.; Chen, J. Oncogene 2003, 22, 4478-
4487.
(7) Bykov, V. J. N.; Selivanova, G.; Wiman, K. G. Eur. J. Cancer 2003, 39,
1828-1834.
(8) (a) Foster, B. A.; Coffey, H. A.; Morin, M. J.; Rastinejad, F. Science
1999, 286, 2507-2510. (b) Rippin, T. M.; Bykov, V. J. N.; Freund, S.
M. V.; Selivanova G.; Wiman, K. G.; Fersht, A. R. Oncogene 2002, 21,
2119-2129.
(9) Bykov, V. J. N.; Issaeva, N.; Shilov, A.; Hultcrantz, M.; Pugacheva, E.;
Chumakov, P.; Bergman, J.; Wiman, K. G.; Selivanova, G. Nat. Med.
2002, 8, 282-288.
(10) Nielsen, A. T. J. Org. Chem. 1966, 1053-1059.
(11) See Supporting Information for details.
(12) Bykov, V. J. N.; Zache, N.; Stridh, H.; Westman, J.; Bergman, J.;
Selivanova, G.; Wiman, K. G. Oncogene, published online Feb 28, 2005,
(13) (a) Han, J.; Flemington, C.; Houghton, A. B.; Gu, Z.; Zambetti, G. P.;
Lutz, R. J.; Zhu, L.; Chittenden, T. Proc. Natl. Acad. Sci. U.S.A. 2001,
98, 11318-11323. (b) Jeffers, J. R.; Parganas, E.; Lee, Y.; Yang, C.;
Wang, J.; Brennan, J.; MacLean, K. H.; Han, J.; Chittenden, T.; Ihle, J.
N.; McKinnon, P. J.; Cleveland, J. L.; Zambetti, G. P. Cancer Cell 2003,
4, 321-328.
(14) (a) Mihara, M.; Erster, S.; Zaika, A.; Petrenko, O.; Chittenden, T.;
Pancoska, P.; Moll, U. M. Mol. Cell. 2003, 11, 577-590. (b) Chipuk, J.
E.; Kuwana, T.; Bouchier-Hayes, L.; Droin, N. M.; Newmeyer, D. D.;
Schuler, M.; Green, D. R. Science 2004, 303, 1010-1014. (c) Leu, J. I.;
Dumont, P.; Hafey, M.; Murphy, M. E.; George, D. L. Nat. Cell Biol.
2004, 6, 443-450.
(15) (a) Matas, D.; Sigal, A.; Stambolsky, P.; Milyavsky, M.; Weisz, L.;
Schwartz, D.; Goldfinger, N.; Rotter, V. EMBO J. 2001, 20, 4163-4172.
(b) Zalcenstein, A.; Stambolsky, P.; Weisz, L.; Muller, M.; Wallach, D.;
Goncharov, T. M.; Krammer, P. H.; Rotter, V.; Oren, M. Oncogene 2003,
22, 5667-5676.
JA045752Y
9
J. AM. CHEM. SOC. VOL. 127, NO. 17, 2005 6153