2672
M. Atobe et al. / Tetrahedron Letters 46 (2005) 2669–2673
anhydride in refluxed pyridine in the presence of 1 equiv
of DMAP. Finally, simultaneous deprotection of the
TBDMS and MOM ethers with BF3ÆOEt2 in acetonitrile
O
O
BnO
CHO
Me
32
31
N
CHCl3, rt
quant.
at 0 °C furnished (+)-abresoline (2) in 84% yield. Our
20
synthetic sample of 3 was found to have ½aꢁ þ 91:1
D
(c 1.2, MeOH) and to be identical with natural abreso-
MeO
BnO
OBn
1
line2 by IR, H NMR, and mass spectra.
33
The first asymmetric synthesis of (+)-abresoline (2) has
thus been achieved starting with the (S)-1-(aryl)homo-
allylic amine 28, which was prepared enantioselectively
by the method based on allylation of the (R)-20-(2-naph-
thyl)-bearing hydroxyoxime ether 26. This synthetic
route employs as the key steps the TiCl4-induced intramo-
lecular Mannich-type cyclization of the 1-azadiene-bear-
ing ketal 33 to afford the cis-2,6-disubstituted piperidine
34, followed by CBr4/PPh3-induced dehydrocyclization
for the elaboration of the amino alcohol 35 to the trans-
4-arylquinolizidine 36. Although the absolute configur-
ation and the optical rotation of natural abresoline have
not yet been determined (no literature data are available),
since the optical rotation value for 2 was first obtained by
the present synthesis, determination of the absolute
configuration of abresoline will become possible by re-
isolation of the natural product and optical rotation
measurement.
O
O
TiCl4, CH2Cl2, 0 ˚C
88%
N
H
MeO
BnO
OH
34
Scheme 4.
Ph3P16 in Et3N/CH2Cl2 at room temperature dehydro-
cyclized to give the trans-quinolizidine 36 [IR (CHCl3)
] in 76% yield
Bohlmann bands, 2885–2778 cmꢀ1
(Scheme 5). Deketalization followed by silyl protection
of the phenolic hydroxyl group gave the quinolizidin-
2-one 37, which was subjected to stereoselective reduc-
tion with LS-SelectrideÒ to produce the quinolizidin-2-
ol 38 as a single isomer. Conversion of 38 to the ferulate
ester 39 (86%) was effected using MOM-protected ferulic
References and notes
1. Rother, A.; Schwarting, A. E. Experientia 1974, 30, 222–
223.
O
O
H2, Pd/C
CBr4, Ph3P
2. Ho¨rhammer, R. B.; Schwarting, A. E.; Edwards, J. M.
J. Org. Chem. 1975, 40, 656–657.
3. (a) For reviews of the lythraceae alkaloids, see: Golebiew-
34
THF–MeOH
93%
N
Et3N, CH2Cl2, rt
76%
H
MeO
HO
´
ski, W. M.; Wrobel, J. T. In The Alkaloids; Rodrigo, R. G.
OH
35
A., Ed.; Academic: New York, 1981; Vol. 18, Chapter 4;
(b) Fuji, K. In The Alkaloids; Brossi, A., Ed.; Academic:
San Diego, 1989; Vol. 35, Chapter 3.
O
N
O
O
1) HCl, THF, refl.
4. For isolation, see: Fuji, K.; Yamada, T.; Fujita, E.;
Murata, H. Chem. Pharm. Bull. 1978, 26, 2515–2521.
5. For a racemic synthesis of the 4-arylquinolizidin-2-ol (1),
see: (a) Takano, S.; Shishido, K. J. Chem. Soc., Chem.
Commun. 1981, 940–942; For racemic syntheses of abres-
oline, see: (b) Quick, J.; Ramachantra, R. Synth. Commun.
1978, 8, 511–514; (c) Takano, S.; Shishido, K. Heterocy-
cles 1982, 19, 1439–1441.
6. For racemic syntheses of lasubine I, see: (a) Iida, H.;
Tanaka, M.; Kibayashi, C. J. Chem. Soc., Chem. Commun.
1983, 1143; (b) Iida, H.; Tanaka, M.; Kibayashi, C. J. Org.
Chem. 1984, 49, 1909–1912; (c) Ent, H.; De Koning, H.;
Speckamp, W. N. Heterocycles 1988, 27, 237–243; (d)
Beckwith, A. L. J.; Joseph, S. P.; Mayadunne, R. T. A. J.
Org. Chem. 1993, 58, 4198–4199; (e) Bardot, V.; Gardette,
D.; Gelas-Mialhe, Y.; Gramain, J.-C.; Remuson, R.
Heterocycles 1998, 48, 507–518; For asymmetric syntheses
of (ꢀ)-lasubine I, see: (f) Commins, D. L.; LaMunyon, D.
H. J. Org. Chem. 1992, 57, 5807–5809; (g) Chalard, P.;
Remuson, R.; Gelas-Mialhe, Y.; Gramain, J.-C. Tetrahe-
dron: Asymmetry 1998, 9, 4361–4368; (h) Ratoni, H.;
Kuendig, E. P. Org. Lett. 1999, 1, 1997–1999; (i) Davis, F.
A.; Rao, A.; Carroll, P. J. Org. Lett. 2003, 5, 3855–3857.
7. For racemic syntheses of lasubine II, see: Refs. 6a,b and
Pilli, R. A.; Dias, L. C.; Maldaner, A. O. J. Org. Chem.
1995, 60, 717–722, and references cited therein; For
2) TBDMSOTf, Py., 0 ˚C
H
H
N
82%
MeO
MeO
OTBDMS
OH
36
37
O
OH
N
MOMO
MeO
O
LS-Selectride®
H
2
THF, –78 ˚C
83%
DMAP, Py., refl.
86%
MeO
OTBDMS
38
O
O
N
BF3·OEt2
OMe
OMOM
H
MeCN, 0 ˚C
84%
MeO
OTBDMS
(+)-abresoline (2)
39
Scheme 5.