Synthesis of Complex Polyketide Natural Products
A R T I C L E S
useful quantities of this compound for preclinical research and
development, stimulated considerable synthetic effort resulting
in six total syntheses2,10 and numerous fragment syntheses.11
In the present paper we report full details of the development
of a total synthesis of (+)-discodermolide based on an asym-
metric crotylation methodology developed in our laboratories.
Results and Discussion
Synthesis Plan. The synthetic plan developed for (+)-
discodermolide was guided by the principles of convergency,
flexibility of modifications in case of pitfalls, and the use of
similar precursors for the construction of key intermediates. At
the outset, we planned to take full advantage of the chiral
crotylsilane-based C-C bond construction methodology, de-
veloped earlier in our laboratories,12 allowing us to efficiently
build polypropionate-like stereochemical arrays. In the context
of acyclic stereocontrol, these reaction processes rely on the
(10) (a) Smith, A. B., III; Qiu, Y.; Jones, D. R.; Kobayashi, K. J. Am. Chem.
Soc. 1995, 117, 12011-12012. (b) Smith, A. B., III; Kaufman, M. D.;
Beauchamp, T. J.; LaMarche, M. J.; Arimoto, H. Org. Lett. 1999, 1, 1823-
1826. (c) Smith, A. B., III; Beauchamp, T. J.; LaMarche, M. J.; Kaufman,
M. D.; Qiu, Y. P.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am. Chem.
Soc. 2000, 122, 8654-8664. (d) Paterson, I.; Florence, G. J.; Gerlach, K.;
Scott, J. P. Angew. Chem., Int. Ed. 2000, 39, 377-380. (e) Paterson, I.;
Florence, G. J.; Gerlach, K.; Scott, J. P.; Sereing, N. J. Am. Chem. Soc.
2001, 123, 9535-9544. (f) Harried, S. S.; Yang, G.; Strawn, M. A.; Myles,
D. C. J. Org. Chem. 1997, 62, 6098-6099. (g) Marshall, J. A.; Johns, B.
A. J. Org. Chem. 1998, 63, 7885-7892. (h) Mickel, S. J.; Sedelmeier, G.
H.; Niederer, D.; Daeffler, R.; Osmani, A.; Schreiner, K.; Seeger-Weibel,
M.; Be´rod, B.; Schaer, K.; Gamboni, R.; Chen, S.; Chen, W.; Jagoe, C. T.;
Kinder, F. R.; Loo, M.; Prasad, K.; Repicˇ, O.; Shieh, W.-C.; Wang,
R.-M.; Waykole, L.; Xu, D. D.; Xue, S. Org. Process Res. DeV. 2004, 8,
92-100. (i) Mickel, S. J.; Sedelmeier, G. H.; Niederer, D.; Schuerch, F.;
Grimler, D.; Koch, G.; Daeffler, R.; Osmani, A.; Hirni, A.; Schaer, K.;
Gamboni, R.; Bach, A.; Chaudhary, A.; Chen, S.; Chen, W.; Hu, B.; Jagoe,
C. T.; Kim, H.-Y.; Kinder, F. R.; Liu, Y.; Lu, Y.; McKenna, J.; Prasad,
M.; Ramsey, T. M.; Repicˇ, O.; Rogers, L.; Shieh, W.-C.; Wang, R.-M.;
Waykole, L. Org. Process Res. DeV. 2004, 8, 101-106. (j) Mickel, S. J.;
Sedelmeier, G. H.; Niederer, D.; Schuerch, F.; Koch, G.; Kuesters, E.;
Daeffler, R.; Osmani, A.; Seeger-Weibel, M.; Schmid, E.; Hirni, A.; Schaer,
K.; Gamboni, R.; Bach, A.; Chen, S.; Chen, W.; Geng, P.; Jagoe, C. T.;
Kinder, F. R.; Lee, G. T.; McKenna, J.; Ramsey, T. M.; Repicˇ, O.; Rogers,
L.; Shieh, W.-C.; Wang, R.-M.; Waykole, L. Org. Process Res. DeV. 2004,
8, 107-112. (k) Mickel, S. J.; Sedelmeier, G. H.; Niederer, D.; Schuerch,
F.; Seger, M.; Schreiner, K.; Daeffler, R.; Osmani, A.; Bixel, D.; Loiseleur,
O.; Cercus, J.; Stettler, H.; Schaer, K.; Gamboni, R. Org. Process Res.
DeV. 2004, 8, 113-121. (l) Mickel, S. J.; Niederer, D.; Daeffler, R.; Osmani,
A.; Kuesters, E.; Schmid, E.; Schaer, K.; Gamboni, R.; Chen, W.; Loeser,
E.; Kinder, F. R.; Konigsberger, K.; Prasad, K.; Ramsey, T. M.; Repicˇ,
O.; Wang, R.-M. Org. Process Res. DeV. 2004, 8, 122-130. (m) Mickel,
S. J.; Daeffler, R.; Prikoszovich, W. Org. Process Res. DeV. 2005, 9, 113-
120.
(11) (a) Clark, D. L.; Heathcock, C. H. J. Org. Chem. 1993, 58, 5878-5879.
(b) Evans, P. L.; Golec, J. M. C.; Gillespie, R. J. Tetrahedron Lett. 1993,
34, 8163-8166. (c) Paterson, I.; Schlapback, A. Synlett 1995, 498-500.
(d) Miyazawa, M.; Oonuma, S.; Maruyama, K.; Miyashita, M. Chem. Lett.
1997, 1191-1192. (e) Miyazawa, M.; Oonuma, S.; Maruyama, K.;
Miyashita, M. Chem. Lett. 1997, 1193-1194. (f) Marshall, J. A.; Lu, Z.
H.; Johns, B. A. J. Org. Chem. 1998, 63, 817-823. (g) Misske, A. M.;
Hoffman, H. M. R. Tetrahedron 1999, 55, 4315-4324. (h) Evans, D. A.;
Halstead, D. P.; Allison, B. D. Tetrahedron Lett. 1999, 40, 4461-4462.
(i) Filla, S. A.; Song, J. J.; Chen, L. R.; Masamune, S. Tetrahedron Lett.
1999, 40, 5449-5453. (j) Paterson, I.; Florence, G. J. Tetrahedron Lett.
2000, 41, 6935-6939. (k) Paterson, I.; Delgado, O.; Florence, G. J.;
Lyothier, I.; Scott, J. P.; Sereing, N. Org. Lett. 2003, 5, 35-38. (l) Shin,
Y.; Choi, N.; Balachandra, R.; Madiraju, C.; Day, B. W.; Curran, D. P.
Org. Lett. 2002, 4, 4443-4446. (m) Day, B. W.; Kangani, C. O.; Avor, K.
S. Tetrahedron: Asymmetry 2002, 13, 1161-1165. (n) Arefolov, A,; Panek,
J. S. Org. Lett. 2002, 4, 2397-2400. (o) Curran, D. P.; Furukawa, T. Org.
Lett. 2002, 4, 2233-2235. (p) BouzBouz, S.; Cossy, J. Org. Lett. 2001, 3,
3995-3998. (q) Arjona, O.; Menchaca, R.; Plumet, J. Tetrahedron 2001,
57, 6751-6755. (r) Yadav, J. S.; Abraham, S.; Reddy, M. M.; Sabitha, G.;
Sankar, A. R.; Kunwar, A. C. Tetrahedron Lett. 2001, 42, 4713-4716. (s)
Kiyooka, S.; Shahid, K. A.; Goto, F.; Okazaki, M.; Shuto, Y. J. Org. Chem.
2003, 68, 7967-7978.
Figure 1. Microtubule-stabilizing natural products.
activity to microtubules is higher for (+)-discodermolide. (+)-
Discodermolide also displays potent activity against multi-drug-
resistant carcinoma cell lines, including paclitaxel-resistant
ovarian and colon cancer cell lines, with an IC50 of 2.5 nM.8 In
the comparative studies of discodermolide, epothilones, and
eleutherobin against a paclitaxel-dependent human lung carci-
noma cell line (A549-T12),9 it was found that discodermolide
could not replace paclitaxel, whereas the natural products
epothilone A and B and eleutherobin could substitute for
paclitaxel and thus maintain the viability of the cell line.
Importantly, the paclitaxel-dependent cell line proved to be
almost 20-fold more sensitive to discodermolide in the presence
of low concentrations of paclitaxel than in its absence. This
synergistic effect, however, was not observed with combinations
of the epothilones or eleutherobin with paclitaxel.
The highly interesting biological profile of discodermolide
makes it a promising candidate for clinical development as a
chemotherapeutic agent, either on its own or in combination
with paclitaxel, for treatment of paclitaxel-resistant breast,
ovarian, and colon cancer, as well as other multi-drug-resistant
cancers. Currently, discodermolide is undergoing phase I clinical
trials for pancreatic cancer at the Cancer Therapy & Research
Center in San Antonio, TX, as it is being developed as an
anticancer drug by Novartis Pharmaceuticals Corp. (Francavilla,
C.; Chen, W. C.; Kinder, K. R. Org. Lett. 2003, 5, 1233-1236).
The remarkable biological activity and challenging structure
of discodermolide, as well as the growing interest in providing
(7) Balachandran, R.; ter Haar, E.; Welsh, M. J.; Grant, S. G.; Day, B. W.
Anti-Cancer Drugs 1998, 9, 67-78.
(12) (a) Jain, N. F.; Takenaka, N.; Panek, J. S. J. Am. Chem. Soc. 1996, 118,
12475-12476. (b) Jain, N. F.; Cirillo, P. F.; Pelletier, R.; Panek, J. S.
Tetrahedron Lett. 1995, 36, 8727-8730. (c) For a review, see: Masse, C.
E.; Panek. J. S. Chem. ReV. 1995, 95, 1293-1316. (d) Panek, J. S.; Beresis,
R. T. J. Org. Chem. 1993, 58, 809-811. (e) Panek, J. S.; Cirillo, P. F. J.
Org. Chem. 1993, 58, 294-296. (f) Panek, J. S.; Beresis, R. T.; Xu, F.;
Yang, M. J. Org. Chem. 1991, 56, 7341-7344.
(8) Kowalski, R. J.; Giannakakou, P.; Gunasekera, S. P.; Longley, R. E.; Day,
B. W.; Hamel, E. Mol. Pharm. 1997, 52, 613-622.
(9) Martello, L. A.; McDiad, H. M.; Regl, D. L.; Yang, C. H.; Meng, D.; Pettus,
T. R.; Kaufman, M. D.; Arimoto, H.; Danishefsky, S. J.; Smith, A. B., III;
Horwitz, S. B. Clin. Cancer Res. 2000, 6, 1978-1987.
9
J. AM. CHEM. SOC. VOL. 127, NO. 15, 2005 5597