1264
N. Sakai et al. / Tetrahedron Letters 47 (2006) 1261–1265
2004, 963; (b) Breitmaier, E.; Gassenmann, S.; Bayer, E.
O
R1
O
R1
R2
Tetrahedron 1970, 26, 5907; (c) Breitmaier, E.; Bayer, E.
Tetrahedron Lett. 1970, 11, 3291; (d) Breitmaier, E.; Bayer,
E. Angew. Chem., Int. Ed. Engl. 1969, 8, 765; (e) Fehnel, E.
A. J. Org. Chem. 1966, 31, 2899.
R2
Me3Si
SiMe3
N
N
O
H
H
O
5. (a) De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46,
1647; (b) Theoclitou, M.-E.; Robinson, L. A. Tetrahedron
Lett. 2002, 43, 3907; (c) Jiang, B.; Si, Y.-G. J. Org. Chem.
2002, 67, 9449.
1
Yb(OTf)3
8
2
O
R1
O
O
H
R1
R2
R1
R2
6. Mangelinckx, S.; Giubellina, N.; Kimpe, N. D. Chem.
Rev. 2004, 104, 2353.
7. Konakahara, T.; Murayama, T.; Sano, K.; Kubota, S. J.
Chem. Res. (S) 1996, 136.
-Me3SiOH
[O]
R2
Me3Si
N
O
N
N
OSiMe3
10
Yb(OTf)3
3
8. (a) Sakai, N.; Hattori, N.; Tomizawa, N.; Abe, N.;
Konakahara, T. Heterocycles 2005, 65, 2799; (b) Konaka-
hara, T.; Sugama, N.; Yamada, A.; Kakehi, A.; Sakai, N.
Heterocycles 2001, 55, 313; (c) Konakahara, T.; Ogawa,
R.; Tamura, S.; Kakehi, A.; Sakai, N. Heterocycles 2001,
55, 1737; (d) Hojahmat, M.; Konakahara, T.; Tamura, S.
Heterocycles 2000, 53, 629; (e) Konakahara, T.; Watan-
abe, A.; Maehara, K.; Nagata, M.; Hojahmat, M.
Heterocycles 1993, 35, 1171.
9
Scheme 4. Plausible mechanism for the cyclization of the N-silyl-
enamine with 2-methylene-1,3-cyclohexanedione.
mechanism is analogous to that for the synthesis of pyr-
idine from the N-silylenamine with a,b-unsaturated
ketones.8b,18
9. Konakahara, T.; Sato, K. Bull. Chem. Soc. Jpn. 1983, 56,
1241.
In summary, we demonstrate that the Yb(OTf)3-
catalyzed cyclization of an N-silylenamine with in situ
generated 2-methylene-1,3-cyclohexanedione and 2-
methylenecyclohexanone leads to a 7,8-dihydroquino-
lin-5-one derivative. The ytterbium salt functions as a
good catalyst, permitting the reaction to proceed under
mild conditions. We also succeeded in the one-pot con-
version of the quinolin-5-one derivative to the 2,3,5-tri-
substituted quinoline derivative in good yield.
10. For selected reviews and paper of a reaction using
Yb(OTf)3, see: (a) Kobayashi, S.; Sugiura, M.; Kitagawa,
H.; Lam, W. W.-L. Chem. Rev. 2002, 102, 2227; (b)
Ishitani, H.; Kobayashi, S. Tetrahedron Lett. 1996, 37,
7357; (c) Kobayashi, S. Synlett 1994, 689.
11. Sielemann, D.; Keuper, R.; Risch, N. Eur. J. Org. Chem.
2000, 543.
12. General procedure for the preparation of 7,8-dihydro-
quinolin-5-one 3: To a 1,4-dioxane solution (1 mL) of
[(2,6-dioxocyclohexyl)methyl]dimethylammonium chlo-
ride (2a, 125 mg, 0.60 mmol) and N-silylenamine
1
Acknowledgements
(0.50 mmol) was added Yb(OTf)3 (6.2 mg, 0.010 mmol)
at room temperature. The reaction mixture was stirred at
the same temperature for 40 h and its progress was
monitored by TLC. To quench the reaction, H2O (2 mL)
was added to the mixture. After the usual work-up, the
crude product was purified by silica gel column chroma-
tography (hexane/EtOAc = 1:1) to give 7,8-dihydroquin-
olin-5-one 3. Spectral data for selected novel compounds:
7,8-dihydro-7,7-dimethyl-2-phenyl-3-(2-pyridinyl)-quino-
lin-5(6H)-one (3ab); white solid; mp 160–162 °C; 1H NMR
(CDCl3, 500 MHz) d 8.58 (m, 1H), 8.50 (s, 1H), 7.43–6.95
(m, 8H), 3.08 (s, 2H), 2.53 (s, 2H), 1.10 (s, 6H); 13C NMR
(CDCl3, 125 MHz) d 197.6, 161.7, 161.1, 157.2, 149.8,
139.3, 137.2, 135.8, 134.1, 129.7, 128.7, 128.1, 125.6, 124.8,
122.1, 52.1, 46.4, 33.0, 28.3; MS (FAB) m/z 329 (M+H,
100%); Anal. Calcd for C22H20N2O2: C, 80.46; H, 6.14; N,
8.53. Found: C, 80.17; H, 6.13; N, 8.55; 7,8-dihydro-3-(3-
This work was partially supported by Grants-in-Aid for
Scientific Research from MEXT (16550148), 2004–2005,
a grant from the Japan Private School Promotion Foun-
dation, and a fund for ‘High-Tech Research Center’
Project for Private Universities: a matching fund subsidy
from MEXT, 2000–2004, and 2005–2007.
References and notes
1. (a) Joule, J. A.; Mills, K. Heterocyclic Chemistry, 4th ed.;
Blackwell Science Ltd: Oxford, 2000; pp 121–150; (b)
Balasubramanian, M.; Keay, J. G. In Comprehensive
Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W.,
Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996;
Vol. 5, pp 245–300; (c) Erian, A. W. Chem. Rev. 1993, 93,
1991.
2. For selected papers for the reactions from arylamines and
1,3-dicarbonyl compounds, see: (a) Tanyeli, C.; Akhme-
dov, I. M.; Isik, M. Tetrahedron Lett. 2004, 45, 5799; (b)
Curran, A. C. W. J. Chem. Soc., Perkin Trans. 1 1976, 975.
3. For selected papers for the reactions from arylamines and
a,b-unsaturated carbonyl compounds (a) Kobayashi, K.;
Takanohashi, A.; Watanabe, S.; Morikawa, O.; Konishi,
H. Tetrahedron Lett. 2000, 41, 7657; (b) Robinson, J. M.;
Brent, L. W.; Chau, C.; Floyd, K. A.; Gillham, S. L.;
McMahan, T. L.; Magda, D. J.; Motycka, T. J.; Pack, M.
J.; Roberts, A. L.; Seally, L. A.; Simpson, S. L.; Smith, R.
R.; Zalesny, K. N. J. Org. Chem. 1992, 57, 7352.
methyl-5-isoxazolyl)-2-phenylquinolin-5(6H)-one
(3ea);
white solid; mp 133–134 °C; 1H NMR (CDCl3,
500 MHz) d 8.67 (s, 1H), 7.41 (m, 5H), 5.55 (s, 1H), 3.22
(t, 2H, J = 6.5 Hz), 2.74 (t, 2H, J = 6.5 Hz), 2.24 (q, 2H,
J = 6.5 Hz), 2.19 (s, 3H); 13C NMR (CDCl3, 125 MHz) d
196.9, 166.7, 163.9, 160.8, 159.9, 139.0, 135.7, 129.4, 128.6,
128.5, 126.5, 121.6, 104.4, 38.5, 32.6, 21.6, 11.4; MS (FAB)
m/z 305 (M+H, 100%); Anal. Calcd for C19H16N2O2: C,
74.98; H, 5.48; N, 9.20. Found: C, 74.96; H, 5.48; N, 9.20;
5,6,7,8-tetrahydro-2-phenyl-3-(2-pyridinyl)quinoline (5aa);
1
white solid; mp 126–127 °C; H NMR (CDCl3, 500 MHz)
d 8.67 (m, 1H), 7.71 (s, 1H), 7.38–6.88 (m, 8H), 3.04 (t, 2H,
J = 7.0 Hz), 2.87 (t, 2H, J = 7.0 Hz), 1.95 (q, 2H,
J = 7.0 Hz), 1.86 (q, 2H, J = 7.0 Hz); 13C NMR
(125 MHz, CDCl3) d 157.8, 157.0, 154.1, 149.4, 140.1,
138.7, 135.1, 132.1, 130.7, 129.5, 127.8, 127.4, 125.0, 121.3,
32.3, 28.1, 22.9, 22.5; MS (FAB) m/z 287 (M+H, 100%);
4. For selected papers for the reactions from o-acylaryl-
amines and a-methylene carbonyl compounds, see: (a)
Yadav, J. S.; Reddy, B. V. S.; Premalatha, K. Synlett