most effective catalyst for cycloisomerizations leading to
furans.8-13 Figure 1 schematically illustrates representative
are sometimes moderate,15a elevated reaction temperatures
are required,15,16 or rather expensive catalysts.10,12,13 Although
most reported gold-catalyzed reactions are carried out under
mild conditions (room temperature) and with a low catalyst
load (usually 1-5 mol %), we were drawn to the investiga-
tion of a less expensive and readily available metal derivative
that would provide parallel catalytic behavior to that of gold.
Coordinative flexibility combined with soft Lewis acidity
makes the zinc center useful for catalysis. Participation of
zinc bromide in synthesis is known and was summarized
recently.18 However, the formation of ring systems with the
use of zinc halides has not been extensively reported.18-22
Few cyclizations, leading to other than furan heterocycles,
were pursued with the aid of ZnCl2.23
We have reported electrophilic cyclizations leading to a
family of 3-halofurans24 and furopyrimidine nucleosides25
with the aid of N-bromo- and N-iodosuccinimide. Presently,
in pursuit of an inexpensive, mild, and efficient synthesis of
2,5-di- and 2,3,5-trisubstituted furans, we have selected the
furan acyclic precursor core (but-3-yn-1-one) with various
groups that remain as ring substituents of its furan derivative.
The alkyl (propyl), cycloalkyl (cyclopropyl, fused cyclo-
hexyl), ether (methoxymethyl), and aryl (phenyl, p-alkyl-
phenyls, p-halophenyls) groups were elected.
Figure 1. Representative gold-catalyzed cycloisomerizations lead-
ing to furans.
examples of gold-catalyzed cycloisomerizations of oxo-
alkynyl compounds: (Z)-alk-2-en-4-yn-1-ols,8 alkynyloxi-
ranes,9 alka-2,3-dien-1-ones,10,11 and alk-3-yn-1-ones,10,12,13
that lead to substituted furans. Among the starting materials
above, homopropargylic ketones are favored due to avail-
ability. Analysis of catalysts that have been examined for
cycloisomerization of alk-3-yn-1-ones revealed, in addition
to Au, derivatives of metals such as Pd14,15 and Cu.16
Recently, the list was expanded to include a mercury(II)
derivative, Hg(OTf)2‚(tetramethylurea)2.17 The reported yields
To prepare starting materials, respective alk-3-yn-1-ols
(1a-h), available by alkynylation of oxiranes,24,26 were
treated with Dess-Martin reagent27 (1.2 equiv) in dichlo-
romethane at room temperature or, except for 1g, with Jones
reagent24b,28-30 (3.0 M) in acetone at 0 °C, to yield but-3-
yn-1-ones (2a-h) (Scheme 1).24
(15) (a) Sheng, H.; Lin, S.; Huang, Y. Synthesis 1987, 1022-1023. (b)
Fukuda, Y.; Shiragami, H.; Utimoto, K.; Nozaki, H. J. Org. Chem. 1991,
56, 5816-5819.
(16) For 2-(1-alkynyl)-2-alken-1-ones see: Patil, N. T.; Wu, H.;
Yamamoto, Y. J. Org. Chem. 2005, 70, 4531-4534.
(17) Me´nard D.; Vidal, A.; Barthomeuf, C.; Lebreton, J.; Gosselin, P.
Synlett 2006, 57-60.
(4) Selected recent examples: (a) Liu, B.; De Brabander, J. K. Org. Lett.
2006, 8, 4907-4910. (b) Belting, V.; Krause, N. Org. Lett. 2006, 8, 4489-
4492. (c) Lo, C.-Y.; Lin, C.-C.; Cheng, H.-M.; Liu, R.-S. Org. Lett. 2006,
8, 3153-3156. (d) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.;
Geneˆt, J.-P.; Michelet, V. J. Am. Chem. Soc. 2006, 128, 3112-3113. (e)
Buzas, A.; Istrate, F.; Gagosz, F. Org. Lett. 2006, 8, 1957-1959. (f) Kim,
N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A. K.; Oh, C. H. Org. Lett. 2005,
7, 5289-5291. (g) Alca´zar, E.; Pletcher, J. M.; McDonald, F. E. Org. Lett.
2004, 6, 3877-3880. (h) Trost, B. M.; Rudd, M. T.; Costa, M. G.; Lee, P.
I.; Pomerantz, A. E. Org. Lett. 2004, 6, 4235-4238.
(5) (a) Vieser, R.; Eberbach, W. Tetrahedron Lett. 1995, 36, 4405-4408.
(b) Arcadi, A.; Marinelli, F.; Pini, E.; Rossi, E. Tetrahedron Lett. 1996,
37, 3387-3390. (c) Arcadi, A.; Rossi, E. Tetrahedron 1998, 54, 15253-
15272.
(6) Brown, C. D.; Chong, J. M.; Shen, L. Tetrahedron 1999, 55, 14233-
14242.
(7) Reviews: (a) Zeni, G.; Larock, R. C. Chem. ReV. 2006, 106, 4644-
4680. (b) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. ReV. 2004, 104,
3079-3159. (c) Zeni, G.; Larock, R. C. Chem. ReV. 2004, 104, 2285-
2309. (d) Nakamura, I.; Yamamoto, Y. Chem. ReV. 2004, 104, 2127-2198.
(e) Kirsch, G.; Hesse, S.; Comel, A. Curr. Org. Synth. 2004, 1, 47-63. (f)
Balme, G.; Bouyssi, D.; Lomberget, T.; Monteiro, N. Synthesis 2003, 2115-
2134. (g) Cacchi, S. J. Organomet. Chem. 1999, 576, 42-64.
(8) Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Org. Lett. 2005, 7,
5409-5412.
(9) Hashmi, A. S. K.; Sinha, P. AdV. Synth. Catal. 2004, 346, 432-438.
(10) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew.
Chem., Int. Ed. 2000, 39, 2285-2288.
(11) Zhou, C.-Y.; Chan, P. W. H.; Che, C.-M. Org. Lett. 2006, 8, 325-
328.
(18) Gossage, R. A. Curr. Org. Chem. 2006, 10, 923-936.
(19) (a) Jacobi von Wangelin, A.: Frederiksen, M. U. Zinc-Mediated
Reactions. In Transition Metals for Organic Synthesis; Beller, M., Bolm,
C., Eds.; Wiley-VCH: Weinheim, Germany, 2003; Chapter 3.7, pp 519-
551. (b) Frantz, D. E.; Fa¨ssler, R.; Tomooka, C. S.; Carreira, E. M. Acc.
Chem. Res. 2000, 33, 373-381.
(20) Aschwanden, P.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2000, 2,
2331-2333.
(21) For synthesis of furans from alk-2-yn-1-ones with the use of ZnBr2
and i-Pr2NEt (MeCN, 40-50 °C, 24 h) see: Lee, K. Y.; Lee, M. J.; Kim,
J. N. Tetrahedron 2005, 61, 8705-8710.
(22) Anastasia, L.; Xu, C.; Negishi, E. Tetrahedron Lett. 2002, 43, 5673-
5676.
(23) (a) Go¨rlitzer, K.; Trittmacher, J.; Jones, P. G. Pharmazie 2005, 60,
494-497. (b) Choi, H.-D.; Seo, P.-J.; Son, B.-W.; Kang, B. W. Arch. Pharm.
Res. 2004, 27, 19-24. (c) For n-BuLi/ZnCl2 cyclization of 2-alkynylphenols
to benzofurans at reflux in toluene see: Nakamura, M.; Ilies, L.; Otsubo,
S.; Nakamura, E. Org. Lett. 2006, 8, 2803-2805.
(24) (a) Sniady, A.; Wheeler, K. A.; Dembinski, R. Org. Lett. 2005, 7,
1769-1722. (b) Sniady, A.; Morreale, M. S.; Dembinski, R. Org. Synth.
2007, 84, 199-208.
(25) Rao, M. S.; Esho, N.; Sergeant, C.; Dembinski, R. J. Org. Chem.
2003, 68, 6788-6790.
(26) Brandsma, L. PreparatiVe Acetylenic Chemistry, 2nd ed.; Studies
in Organic Chemistry 34; Elsevier: Amsterdam, The Netherlands, 1988; p
67.
(12) Zhang, J.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2006, 45, 6704-
6707.
(13) For 2-(1-alkynyl)-2-alken-1-ones see: (a) Yao, T.; Zhang, X.;
Larock, R. C. J. Org. Chem. 2005, 70, 7679-7685. (b) Yao, T.; Zhang,
X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164-11165. (c) Liu, X.;
Pan, Z.; Shu, X.; Duan, X.; Liang, Y. Synlett 2006, 1962-1964.
(14) Utimoto, K. Pure Appl. Chem. 1983, 55, 1845-1852.
(27) (a) Boeckman, R. K., Jr.; Shao, P.; Mullins, J. J. Organic Syntheses;
Wiley: New York, 2004; Collect. Vol. X, pp 696-703 (Org. Synth. 2000,
77, 141-152). (b) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.
(28) Eisenbraun, E. J. Organic Syntheses; Wiley: New York, 1973;
Collect. Vol. V, pp 310-314 (Org. Synth. 1965, 45, 28-32).
1176
Org. Lett., Vol. 9, No. 7, 2007