2538
Organometallics 2005, 24, 2538-2541
Notes
A Convenient One-Pot Synthesis of a
Functionalized-Arene Ruthenium Half-Sandwich
Compound [RuCl2(η6-C6H5OCH2CH2OH)]2
Janet Soleimannejad
Department of Chemistry, University of Ilam, Ilam, Iran
Colin White*
Department of Chemistry, The University, Western Bank, Sheffield, U.K., S3 7HF
Received December 4, 2004
Summary: Reaction of RuCl3‚xH2O with 1-methoxy-1,4-
cyclohexadiene in an alcohol solvent, ROH, gives [RuCl2-
(η6-C6H5OR)]2 (R ) Me, Et, or HOCH2CH2) in up to 79%
yield. The crystal structures of [Ru2(µ-Cl3)(η6-C6H5-
OEt)2]+[BPh4]- and [RuCl2(η6-C6H5OCH2CH2OH)]2 are
also reported.
were easily accessible. Further, functionalized-arene
ruthenium complexes are also of interest in their own
right,9 in part because they have been shown to be
superior catalysts to nonfunctionalized-arene cata-
lysts.10 However, access to functionalized-arene ruthe-
nium half-sandwich compounds is not trivial. The usual
method of synthesising this class of compounds is by
dehydrogenation of 1,3- or 1,4-cyclohexadienes using
ethanolic RuCl3.11 This method works well, but for
functionalized-arene complexes this route is rarely an
option because the required dihydroarene derivatives
are usually not available by Birch reduction. An alter-
native route involves displacement of the cyclooctatriene
ligand in Ru(cod)(cot) by an arene under hydrogen,12 but
the limitation of this method is that the cyclooctatriene
precursor can be prepared efficiently only on a small
scale.13 More recently, displacement of the labile naph-
thalene ligand in naphthalene(cyclooctadiene)ruthenium-
(0) by a functionalized-arene has been the method of
choice.1b,9a Unfortunately, access to this naphthalene
complex requires a three-stage synthesis from RuCl3,
and the complex itself is both air-sensitive and ther-
mally unstable. In contrast, the method reported here,
a variation of the original synthetic route, provides
Introduction
Arene ruthenium half-sandwich compounds have
proved to be versatile homogeneous catalysts for a wide
range of reactions including alkene1 and aromatic
hydrogenation,2 asymmetric hydrogen-transfer reduc-
tion of ketones3 and imines,4 Diels-Alder reactions,5
and alkene metathesis.6 They have also been utilized
as reagents in organic synthesis.7 This has stimulated
efforts to prepare supported-arene ruthenium complexes
in order to have easily recyclable catalysts and re-
agents.8 Synthesis of supported complexes would be
facilitated if functionalized-arene ruthenium complexes
* To whom correspondence should be addressed. Tel: 0114 222 9310.
(1) (a) Moldes, I.; de la Encarnacion, E.; Ros, J.; Alvarez-Larena,
A.; Piniella, J. F. J. Organomet. Chem. 1998, 566, 165. (b) Bennett,
M. A. Coord. Chem. Rev. 1997, 166, 225. (c) Heinemann, F.; Klodwig,
J.; Knoch, F.; Wuendisch, M.; Zenneck, U. Chem. Ber. 1997, 130, 123.
(d) Pertici, P.; Vitulli, G.; Bigelli, C.; Lazzaroni, R. J. Organomet. Chem.
1984, 275, 113.
(2) Wong, T. Y. H.; Pratt, R.; Leong, C. G.; James, B. R.; Hu, T. Q.
Chem. Ind. (Dekker) 2001, 82, 255.
(3) (a) Noyori R.; Yamakawa, M.; Hashiguchi, S. J. Org. Chem. 2001,
66, 7931. (b) Noyori, R.; Ohkuma, T. Pure Appl. Chem. 1999, 71, 1493.
(4) (a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97. (b)
Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118,
4916.
(5) (a) Davenport, A. J.; Davies, D. L.; Fawcett, J.; Russell, D. R. J.
Chem. Soc., Perkin Trans. 1 2001, 1500. (b) Davies, D. L.; Fawcett, J.;
Garratt, S. A.; Russell, D. R. Organometallics 2001, 20, 3029. (c)
Davenport, A. J.; Davies, D. L.; Fawcett, J.; Garratt, S. A.; Russell, D.
R. J. Chem. Soc., Dalton Trans. 2000, 4432.
(6) Jafarpour, L.; Huang, J.; Stevens, E. D.; Nolan, S. P. Organo-
metallics 1999, 18, 3760.
(7) (a) Pigge, F. C.; Coniglio, J. J. Curr. Org. Chem. 2001, 5, 757.
(b) Pearson, A. J.; Lee, K. J. Org. Chem. 1994, 59, 2304.
(8) (a) Sandee, A. J.; Petra, D. G.; Reek, J. N.; Kamer, P. C.; van
Leeuwen, P. W. Chemistry 2001, 7, 1202. (b) Leadbeater, N. E.; Scott,
K. A.; Scott, L. J. J. Org. Chem. 2000, 65, 3231. (c) Bayston, D. J.;
Travers, C. B.; Polywka, M. E. C. Tetrahedron Asym. 1998, 9, 2015.
(d) Ciardelli, F.; Pertici, P. Z. Naturforsch. B Anorg. Chem., Org. Chem.
1985, 40B, 133.
(9) (a) Bodes, G.; Heinemann, F. W.; Marconi, G.; Neumann, S.;
Zenneck, U. J. Organomet. Chem. 2002, 641, 90. (b) Nelson, J. H.;
Ghebreyessus, K. Y.; Cook, V. C.; Edwards, A. J.; Wielandt, W.; Wild,
S. B.; Willis, A. C. Organometallics 2002, 21, 1727. (c) Bennett, M. A.;
Edwards, A. J.; Harper, J. R. Khimyak, T.; Willis, A. C. J. Organomet.
Chem. 2001, 629, 7. (d) Miyaki, Y.; Onishi, T.; Kurosawa, H. Inorg.
Chim. Acta 2000, 300-302, 369. (e) Brunner, H.; Valerio, C.; Zabel,
M. New J. Chem. 2000, 24, 275. (f) Therrien, B.; Koenig, A.; Ward, T.
R. Organometallics 1999, 18, 1565.
(10) (a) Cetinkaya, B.; Demir, S.; Ozdemir, I.; Toupet, L.; Semeril.
D.; Bruneau, C.; Dixneuf, P. H. New J. Chem. 2001, 25, 519. (b) Miyaki,
Y.; Onishi, T.; Ogoshi, S.; Kurosawa, H. J. Organomet. Chem. 2000,
616, 135. (c) Simal, F.; Jan, D.; Demonceau, A.; Noels, A. F. Tetra-
hedron Lett. 1999, 40, 1653.
(11) (a) Pertici, P.; Salvadori, P.; Biasci, A.; Vitulli, G.; Bennett, M.
A.; Kane-Maguire, L. A. P. J. Chem. Soc., Dalton Trans. 1988, 315.
(b) Bennett, M. A.; Smith, A. K. J. Chem. Soc., Dalton Trans. 1974,
233. (c) Zelonka, R. A.; Baird, M. C. Can. J. Chem. 1972, 50, 3063. (d)
Winkhaus, G.; Singer, H. J. Organomet. Chem. 1967, 7, 487.
(12) Pertici, P.; Vitulli, G.; Lazzaroni, R.; Salvadori, P.; Barili, P. L.
J. Chem. Soc., Dalton Trans. 1982, 1019.
(13) Bennett, M. A.; Neumann, H.; Thomas, M.; Wang, X. Q.; Pertici,
P.; Salvadori, P.; Vitulli, G. Organometallics 1991, 10, 3238.
10.1021/om049044x CCC: $30.25 © 2005 American Chemical Society
Publication on Web 04/07/2005