6198
S. D. Sawant et al. / Tetrahedron Letters 53 (2012) 6195–6198
In conclusion, we have developed an environmentally friendly
Table 3 (continued)
and efficient microwave-assisted one-pot multicomponent meth-
od for the synthesis of biologically important purine quinazolinone
derivatives in good yields. The biological potential of these com-
pounds is being studied and will be published in due course.
Entry
R
R1
R2
R3
Yielda
76
7
S
k
–CH3
–H
–H
COOMe
Acknowledgments
l
–CH3
–CH3
–H
–H
73
76
Authors M.S., G.L.R., and V.V.R. thank CSIR for the award of se-
nior research fellowship. Authors thank for the support from
Instrumentation Division of IIIM-J.
m
CF3
Supplementary data
Supplementary data (1H/13C NMR, DEPT at 135°, mass for some
compounds) associated with this article can be found, in the online
n
–CH3
–H
77
NH2
F
References and notes
o
p
–CH3
–CH3
–H
–H
–H
80
71
Cl
1. (a) Zhu, J.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH: Weinheim,
2005. and references therein; (b) Orru, R. V. A.; Ruijeter, E. Synthesis of
Heterocycles via Multicomponent Reactions I and II; Springer GmbH: Berlin, 2010.
and references therein.
2. For reviews see: (a) Domling, A. Chem. Rev. 2006, 106, 17; (b) Akritopoulou-
Zanze, I.; Djuric, S. W. Heterocycles 2007, 73, 125; (c) Zhu, J. Eur. J. Org. Chem.
2003, 1133; (d) Sunderhaus, J. D.; Martin, S. F. Chem. Eur. J. 2009, 15, 1300; (e)
D’Souza, D. M.; Müller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095; (f) Toure, B. B.;
Hall, D. G. Chem. Rev. 2009, 109, 4439.
N
CF3
CF3
q
–CH3
–H
–H
73
3. (a) Domling, A.; Ugi, I. Angew. Chem. 2000, 112, 3300; (b) Domling, A.; Ugi, I.
Angew. Chem., Int. Ed. 2000, 39, 3168; (c) Jimenez-Abnso, S.; Chavez, H.;
Estevez-Braan, A.; Ravelo, A.; Feresin, G.; Tapia, A. Tetrahedron 2008, 64, 8938;
(d) Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602; (e) Shi, D.; Ni, S.;
Yang, F.; Ji, S. J. Hetrocycl. Chem. 2008, 45, 1275.
4. (a) Ye, F.; Alper, H. J. Org. Chem 2007, 72, 3218; (b) Groenandaal, B.; Vugts, D. J.;
Schmitz, R. F.; DeKanter, F. J. J.; Ruijter, E.; Groen, M. B.; Orru, R. V. A. J. Org.
Chem. 2008, 73, 719.
5. (a) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250; (b) Dallinger, D.; Kappe, C.
O. Chem. Rev. 2007, 2563; (c) Chow, W. S.; Chan, T. S. Tetrahedron Lett. 2009, 50,
1286.
6. Reddy, P. B.; Singh, P. P.; Sawant, S. D.; Koul, S.; Taneja, S. C.; Sampath Kumar, H.
M. ARKIVOC 2006, xiii, 142.
r
s
t
–H
–CH3
–H
–H
–H
–H
77
75
72
OCF3
–CH3
–CH3
CF3
–H
7. (a) Cao, S. L.; Feng, Y. P.; Jiang, Y. Y. Bioorg. Med. Chem. Lett. 2005, 15, 1915; (b)
Giri, R. S.; Thaker, H. M.; Giordano, T.; Williams, J.; Rogers, D.; Sudersanam, V.;
Vasu, K. K. Eur. J. Med. Chem. 2009, 44, 2184; (c) Jatav, V.; Mishra, P.; Kashaw, S.
Eur. J. Med. Chem. 2008, 43, 1945; (d) Kumar, A.; Sharma, S.; Bajaj, A. K.; Sharma,
S.; Panwar, H.; Singh, N.; Srivastava, V. K. Bioorg. Med. Chem. Lett. 2003, 11,
5293.
8. For reviews, see: (a) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166; (b) Michael, J. P.
Nat. Prod. Rep. 2007, 24, 223; (c) Mhaske, S. B.; Argade, N. P. Tetrahedron 2006,
62, 9787; (d) Connolly, D. J.; Cusack, D.; O’Sullivan, T. P.; Guiry, P. J. Tetrahedron
2005, 61, 10153; (e) Michael, J. P. Nat. Prod. Rep. 2004, 21, 650; (f) Michael, J. P.
Nat. Prod. Rep. 2003, 20, 476; (g) Michael, J. P. Nat. Prod. Rep. 2002, 19, 742; (h)
Michael, J. P. Nat. Prod. Rep. 2001, 18, 543; (i) Michael, J. P. Nat. Prod. Rep. 2000,
17, 603; (j) Tseng, Ming-Chung; Yang, Huei-Yun; Chu, Yen-Ho Org. Biomol.
Chem. 2010, 8, 419.
9. (a) Ward, S.; Finan, P. Curr. Opin. Pharmacol. 2003, 3, 426; (b) Knight, Z. A.;
Shokat, K. M. Biochem. Soc. Trans. 2007, 35, 245–249; (c) Sadhu, C.; Masinovski,
B.; Dick, K.; Sowell, C. G.; Staunton, D. E. J. Immnunol. 2003, 170, 2647; (d)
Sadhu, C.; Treiberg, J.; Kesicki, E. A.; Oliver, A. WO 01/81346 A2.
10. (a) Fruman, D. A.; Rommel, C. Cancer Discov. 2011, 1, 562; (b) Lannutti, B. J.;
Meadows, S. A.; Herman, S. E. M.; Kashishian, A.; Steiner, B.; Johnson, A. J.; Byrd,
J. C.; Tyner, J. W.; Loriaux, M. M.; Deininger, M.; Druker, B. J.; Puri, K. D.; Ulrich,
R. G.; Giese, N. A. Blood 2011, 117, 591; (c) Herman, S. E. M.; Gordon, A. L.;
Wagner, A. J.; Heerema, N. A.; Zhao, W.; Zhang, J.; Wei, L.; Byrd, J. C.; Johnson, A.
J.; Flynn, M.; Jones, J.; Andritsos, L.; Puri, K. D.; Lannutti, B. J.; Giese, N. A. Xiaoli
Blood 2010, 116, 2078.
11. (a) Connolly, D. J.; Cusack, D.; O’Sullivan, T. P.; Guiry, P. J. Tetrahedron 2005, 61,
10153; (b) Dou, G.; Wang, M.; Shi, D. J. Comb. Chem. 2009, 11, 151; (c) Fang, J.;
Zhou, J. Org. Biomol. Chem. 2012, 10, 2389; (d) Houghten, R. A.; Ostresh, J. M.
U.S. Patent 5,783,577.; (e) Ozaki, K.; Yamada, Y.; Oine, T.; Ishizuka, T.; Iwasawa,
Y. J. Med. Chem. 1985, 28, 568; (f) Martin, J. D.; Jeremiah, P. M.; Alicia, M. B.;
Bradley, D. S. Tetrahedron Lett. 2001, 42, 1851.
a
Isolated yields.
irradiation for 3 min at 350 W to give the intermediate 5, that is, 2-
(chloromethyl)-5-methyl-3-o-tolylquinazolin-4(3H)-one. This
intermediate without purification was used for coupling reaction
with adenine 6,13 in the presence of K2CO3 (100 W microwave
power, 5 min, 100 °C) to give the desired purine quinazolinone
derivative 7a and 7a0 as regioisomers in the ratio of 80:20
(Scheme 2).
The structures of these two regioisomers have been confirmed
by comparison of 1H NMR data with that of the reported com-
pounds.9d In H NMR of 7a, the methylene group at 100 position
1
(Fig. 4) shows double doublet at d 4.79 and 5.11 with J = 17.2 and
17.2 Hz. However, the same methylene group at 100 position in case
of 7a0 shows quartet at d 5.23 with J = 17.6 and 17.2 Hz (1H NMR of
both regioisomers is given in Supplementary data). While optimi-
zation of the reaction, it was observed that change in reaction con-
ditions like change in microwave power or temperature and time
gave different results, which are summarized in Tables 1 and 2.
The percentage conversion in the formation of intermediate 5 at
100, 250, and 350 W, was 45, 78, and >95 while at 450 W the prod-
uct decomposed (Table 1). However, the conversion of 5 to 7 re-
quired several experiments for optimization of the reaction
conditions. The best condition for the conversion of 5 to 7a/a0
was found to be irradiation with 100 W microwave power for
5 min at 100 °C. Therefore, all the reactions were performed under
the optimized conditions (Table 2, entry b at 100 W for 5 min MW
irradiation), and the examples are given in Table 3.
12. Xue, S.; McKenna, J.; Shieh, W. C.; Repic, O. J. Org. Chem. 2004, 69, 6474.
13. (a) Young, R. C.; Jones, M.; Milliner, K. J.; Rana, K. K.; Ward, J. G. J. Med. Chem.
1990, 33, 2073; (b) Lambertucci, C.; Antonini, I.; Buccioni, M.; Ben, D. D.;
Kachare, D. D.; Volpini, R.; Klotz, K.; Cristalli, G. Bioorg. Med. Chem. 2009, 17,
2812.