C O M M U N I C A T I O N S
Table 2. Enantioselective Cyclopentenone Synthesis
C-C bond formation prior to scission of the stereogenic C-O bond
is operative. Efforts aimed at utilizing Au(I) complexes as catalysts
for other rearrangements are ongoing in our laboratories.
Acknowledgment. We gratefully acknowledge the University
of California, Berkeley, Boehringer Ingelheim, and Merck Research
Laboratories for financial support. The Center for New Directions
in Organic Synthesis is supported by Bristol-Myers Squibb as a
Sponsoring Member, and Novartis Pharma as a Supporting Member.
Supporting Information Available: Experimental procedures and
compound characterization data (PDF). This material is available free
References
(1) Asymmetric Pauson-Khand-type reactions catalyzed by Co: (a) Hiroi,
K.; Watanabe, T.; Kawagishi, R.; Abe, I. Tetrahedron: Asymmetry 2000,
11, 797-808. (b) Sturla, S. J.; Buchwald, S. L. J. Org. Chem. 2002, 67,
3398-3403. Ti: (c) Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc.
1999, 121, 7026-7033. Rh: (d) Jeong, N.; Sung, B. K.; Choi, Y. K. J.
Am. Chem. Soc. 2000, 122, 6771-6772. (e) Shibata, T.; Toshida, N.;
Takagi, K. J. Org. Chem. 2002, 67, 7446-7450. Ir: (f) Shibata, T.;
Takagi, K. J. Am. Chem. Soc. 2000, 122, 9852-9853. For examples of
asymmetric Pauson-Khand reaction using chiral auxiliaries, see: (g)
Rivero, M. R.; de la Rosa, J. C.; Carretero, J. C. J. Am. Chem. Soc. 2003,
125, 14992 and references therein.
(2) For catalytic asymmetric Nazarov cyclizations, see: (a) Liang, G.; Trauner,
D. J. Am. Chem. Soc. 2004, 126, 9544. (b) Aggarwal, V. K.; Belfield, A.
J. Org. Lett. 2003, 5, 5075. For asymmetric Nazarov cyclizations of chiral
allenes, see: (c) Tius, M. A. Acc. Chem. Res. 2003, 36, 284.
(3) For alternative asymmetric syntheses of cyclopentenones, see: (a) Tanaka,
K.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 10296. (b) Barluenga, J.;
Toma´s, M.; Ballesteros, A.; Santamar´ıa, J.; Brillet, C.; Gar´ıa-Granda, S.;
Pin˜era-Nicola´s, A.; Va´zquez, J. T. J. Am. Chem. Soc. 1999, 121, 4516.
a Isolated yield after column chromatography; % ee determined using
chiral HPLC or GC (see Supporting Information for details).
Scheme 1. Proposed Mechanism for the Au(I)-Catalyzed
Cyclopentenone Synthesis
(4) Rautenstrauch, V. J. Org. Chem. 1984, 49, 950.
(5) (a) Mainetti, E.; Mourie´s, V.; Fensterbank, L.; Malacria, M.; Marco-
Contelles, J. Angew. Chem., Int. Ed. 2002, 41, 2132. (b) Miki, K.; Ohe,
K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. (c) Nevado, C.; Ca´rdenas,
D. J.; Echavarren, A. M. Chem.sEur. J. 2003, 9, 2627. (d) Mamane, V.;
Gress, T.; Krause, H.; Fu¨rstner, A. J. Am. Chem. Soc. 2004, 126, 8654.
(e) Harrak, Y.; Blasykowski, C.; Fensterbank, L.; Malacria, M. J. Am.
Chem. Soc. 2004, 126, 8656.
(6) (a) Neito-Oberhuber, C.; Mun˜oz, M. P.; Bun˜uel, E.; Nevado, C.; Ca´rdenas,
D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402. (b)
Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004,
126, 10858. (c) Zuang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126,
11806. (d) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978.
(e) For an excellent review of homogeneous gold-catalyzed reactions,
see: Hashmi, A. S. K. Gold Bull. 2004, 37, 51.
(7) (a) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc.
2004, 126, 4526. (b) Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D.
Angew. Chem., Int. Ed. 2004, 43, 5350.
(8) Under these conditions (5% catalysts, 0.1 M acetonitrile, rt, 14 h), other
metal complexes produced the following results: AgOTf (100% recovered
4, 0% 5); AuCl3 (0% 4, 50% 5); PdCl2(MeCN)2 (62% 4, 0% 5); PtCl2
(100% 4, 0% 5), CuBr (100% 4, 0% 5).
and with 91% ee (Table 2, entry 3). Under these conditions, Au(I)-
catalyzed rearrangement of enantioenriched propargyl pivaloates
delivered cyclopentenones with excellent chirality transfer (Table
2).10
A mechanistic hypothesis that accounts for the stereochemical
course of the Au(I)-catalyzed rearrangement is shown in Scheme
1. Intramolecular 1,2-addition of the ester onto the alkyne, induced
by coordination of the alkyne to a cationic gold(I) complex, affords
vinyl gold species 30. The stereoselectivity of the gold(I)-catalyzed
cyclization can be accounted for by an intramolecular cyclization
that proceeds through a transition state (31) in which the leaving
group occupies a position orthogonal to the plane of the olefin.11
This cyclization produces cationic intermediate 32, which upon
elimination of cationic gold(I), affords diene 33.12 Finally, cyclo-
pentadiene 33 is hydrolyzed to cyclopentenone 5.
(9) Enantioenriched propargyl alcohols were prepared by reduction of the
corresponding ketone with R-Alpine-Borane and the absolute stereo-
chemistry assigned according to Midland, M. M.; McDowell, D. C.; Hatch,
R. L.; Tramontano, A. J. Am. Chem. Soc. 1980, 102, 867.
(10) The absolute stereochemistry of cyclopentenone 23 ([R]D ) -174 (c 1.25,
CHCl3)) was assigned by comparison of optical rotation to that reported
in the literature ([R]D ) -141 (c 0.14, CHCl3)). Hua, D. H. J. Am. Chem.
Soc. 1986, 108, 3835. The stereochemistry of the remaining cyclopen-
tenones was assigned by analogy.
(11) This transition state also accounts for the observation that rearrangement
of a 1:2 mixture of Z:E olefin isomers (34) returned the Z-isomer unreacted.
Cyclization of the Z-isomer would require that the olefin substituent come
into close proximity to the vinyl gold.
In conclusion, we have developed a Au(I) catalyst for the re-
arrangement of 1-ethynyl-2-propenyl pivaloates to cyclopentenones.
The gold(I)-catalyzed reactions are tolerant of substitution at the
acetylenic and olefinic positions (except for Z-olefins), thus provid-
ing access to a wide range of cyclopentenones under exceptionally
mild conditions. Additionally, enantioenriched cyclopentenones can
be prepared by the gold(I)-catalyzed cyclization of enantioenriched
propargyl alcohols. The high degree of chirality transfer in these
rearrangements suggests that, in this case, a mechanism involving
(12) In accord with this proposed intermediate, diene 37 was isolated from
cycloisomerization of 36.
JA051689G
9
J. AM. CHEM. SOC. VOL. 127, NO. 16, 2005 5803