Hydrogen Bonds in Zinc Porphyrin-Quinone Dyads
J. Phys. Chem. B, Vol. 109, No. 16, 2005 7723
(15) (a) Mart´ın, N.; Sa´nchez, L.; Illescas, B.; Pe´rez, I. Chem. ReV. 1998,
98, 2527. (b) Segura, J. L.; Mart´ın, N. Angew. Chem., Int. Ed. 2001, 40,
1372. (c) Diederich, F.; Go´mez-Lo´pez, M. Chem. Soc. ReV. 1999, 28, 263.
(16) (a) Fukuzumi, S.; Guldi, D. M. In Electron Transfer in Chemistry;
Balzani, V., Ed.; Wiley-VCH: Weinheim, Germany, 2001; Vol. 2, pp 270-
337. (b) Fukuzumi, S. Org. Biomol. Chem. 2003, 1, 609.
(26) DeSimone, R. E.; Drago, R. S. J. Am. Chem. Soc. 1970, 92, 2343.
(27) (a) Fukuzumi, S.; Okamoto, K.; Yoshida, Y.; Imahori, H.; Araki,
Y.; Ito, O. J. Am. Chem. Soc. 2003, 125, 1007. (b) Okamoto, K.; Imahori,
H.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 7014.
(28) Mann, C. K.; Barnes, K. K. Electrochemical Reactions in Non-
aqueous Systems; Dekker: New York, 1990.
(17) (a) Gust, D.; Moore, T. A.; Makings, L. R.; Liddell, P. A.; Nemeth,
G. A.; Moore, A. L. J. Am. Chem. Soc. 1986, 108, 8028. (b) Gust, D.;
Moore, T. A.; Liddell, P. A.; Nemeth, G. A.; Makings, L. R.; Moore, A.
L.; Barrett, D.; Pessiki, P. J.; Bensasson, R. V.; Rouge´e, M.; Chachaty, C.;
De Schryver, F. C.; Van der Auweraer, M.; Holzwarth, A. R.; Connolly, J.
S. J. Am. Chem. Soc. 1987, 109, 846. (c) Gust, D.; Moore, T. A.; Moore,
A. L.; Makings, L. R.; Seely, G. R.; Ma, X.; Trier, T. T.; Gao, F. J. Am.
Chem. Soc. 1988, 110, 7567. (d) Hung, S.-C.; Macpherson, A. N.; Lin, S.;
Liddell, P. A.; Seely, G. R.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am.
Chem. Soc. 1995, 117, 1657. (e) Macpherson, A. N.; Liddell, P. A.; Lin,
S.; Noss, L.; Seely, G. R.; DeGraziano, J. M.; Moore, A. L.; Moore, T. A.;
Gust, D. J. Am. Chem. Soc. 1995, 117, 7202.
(18) (a) Moore, T. A.; Gust, D.; Mathis, P.; Mialocq, J. C.; Chachaty,
C.; Bensasson, R. V.; Land, E. J.; Doizi, D.; Liddell, P. A.; Lehman, W.
R.; Nemeth, G. A.; Moore, A. L. Nature 1984, 307, 630. (b) Seta, P.;
Bienvenue, E.; Moore, A. L.; Mathis, P.; Bensasson, R. V.; Liddell, P. A.;
Pessiki, P. J.; Joy, A.; Moore, T. A.; Gust, D. Nature 1985, 316, 653.
(c) Bennett, I. M.; Vanegas Farfano, H. M.; Bogani, F.; Primak, A.; Liddell,
P. A.; Otero, L.; Sereno, L.; Silber, J. J.; Moore, A. L.; Moore, T. A.; Gust,
D. Nature 2002, 420, 398.
(29) Fukuzumi, S.; Nakanishi, I.; Suenobu, T.; Kadish, K. M. J. Am.
Chem. Soc. 1999, 121, 3468.
(30) (a) Luo, C.; Fujitsuka, M.; Watanabe, A.; Ito, O.; Gan, L.; Huang,
Y.; Huang, C.-H. J. Chem. Soc., Faraday Trans. 1998, 94, 527.
(b) Pekkarinen, L.; Linschitz, H. J. Am. Chem. Soc. 1960, 82, 2407.
(c) Luo, C.; Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, Y. J. Am. Chem.
Soc. 2000, 122, 6535.
(31) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang,
W.; Parr, R. G. Phys. ReV. B 1988, 37, 785.
(32) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio
Molecular Orbital Theory; Wiley: New York, 1986.
(33) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.;
Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98
(Revision A.7); Gaussian, Inc.; Pittsburgh, PA, 1998.
(34) (a) Wong, M. W. Chem. Phys. Lett. 1996, 256, 391. (b) Martos-
Calvente, R.; de la Pena O’Shea, V. A.; Campos-Martin, J. M.; Fierro, J.
L. G. J. Phys. Chem. A 2003, 107, 7490.
(35) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J.
Chem. Phys. 1996, 104, 5497.
(36) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985,
83, 735.
(37) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am. Chem.
(19) (a) Schmidt, J. A.; McIntosh, A. R.; Weedon, A. C.; Bolton, J. R.;
Connolly, J. S.; Hurley, J. K.; Wasielewski, M. R. J. Am. Chem. Soc. 1988,
110, 1733. (b) Johnson, D. G.; Niemczyk, M. P.; Minsek, D. W.;
Wiederrecht, G. P.; Svec, W. A.; Gaines, G. L., III; Wasielewski, M. R. J.
Am. Chem. Soc. 1993, 115, 5692. (c) Liu, J.; Bolton, J. R. J. Phys. Chem.
1992, 96, 1718.
(20) (a) Sakata, Y.; Nakashima, S.; Goto, Y.; Tatemitsu, H.; Misumi,
S. J. Am. Chem. Soc. 1989, 111, 8979. (b) Sakata, Y.; Tsue, H.; O’Neil,
M. P.; Wiederrecht, G. P.; Wasielewski, M. R. J. Am. Chem. Soc. 1994,
116, 6904. (c) Tsue, H.; Imahori, H.; Kaneda, T.; Tanaka, Y.; Okada, T.;
Tamaki, K.; Sakata, Y. J. Am. Chem. Soc. 2000, 122, 2279. (d) Wynne,
K.; LeCours, S. M.; Galli, C.; Therien, M. J.; Hochstrasser, R. M. J. Am.
Chem. Soc. 1995, 117, 3749. (e) Iovine, P. M.; Veglia, G.; Furst, G.; Therien,
M. J. J. Am. Chem. Soc. 2001, 123, 5668. (f) Kang, Y. K.; Rubtsov, I. V.;
Iovine, P. M.; Chen, J.; Therien, M. J. J. Am. Chem. Soc. 2002, 124, 8275.
(21) (a) Delaney, J. K.; Mauzerall, D. C.; Lindsey, J. S. J. Am. Chem.
Soc. 1990, 112, 957. (b) Knapp, S.; Murali Dhar, T. G.; Albaneze, J.;
Gentlemann, S.; Potenza, J. A.; Holten, D.; Schugar, H. J. J. Am. Chem.
Soc. 1991, 113, 3, 4010. (c) Asahi, T.; Ohkohchi, M.; Matsusaka, R.;
Mataga, N.; Zhang, R. P.; Osuka, A.; Maruyama, K. J. Am. Chem. Soc.
1993, 113, 5665. (d) Khundkar, L. R.; Perry, J. W.; Hanson, J. E.; Dervan,
P. B. J. Am. Chem. Soc. 1994, 116, 9700. (e) Sen, A.; Krishnan, V. J.
Photochem. Photobiol. A 1999, 123, 77.
(22) (a) Aoyama, Y.; Asakawa, M.; Matsui, Y.; Ogoshi, H. J. Am. Chem.
Soc. 1991, 113, 6233. (b) Sessler, J. L.; Wang, B.; Harriman, A. J. Am.
Chem. Soc. 1993, 115, 10418. (c) Berg, A.; Shuali, Z.; Asano-Someda,
M.; Levanon, H.; Fuhs, M.; Mo¨bius, K.; Wang, R.; Brown, C.; Sessler, J.
L. J. Am. Chem. Soc. 1999, 121, 7433. (d) D’Souza, F. J. Am. Chem. Soc.
1996, 118, 923. (e) Myles, A. J.; Branda, N. R. J. Am. Chem. Soc. 2001,
123, 177. (f) Arimura, T.; Nishioka, T.; Ide, S.; Suga, Y.; Sugihara, H.;
Murata, S.; Tachiya, M. J. Photochem. Photobiol. A 2001, 145, 123.
(g) Williamson, D. A.; Bowler, B. E. Inorg. Chim. Acta 2000, 297, 47.
(23) In liquid crystals, the charge-recombination rates were attenuated
into the sub-microsecond time scale; see: (a) Berman, A.; Izraeli, E. S.;
Levanon, H.; Wang, B.; Sessler, J. L. J. Am. Chem. Soc. 1995, 117, 8252.
(b) Berg, A.; Shuali, Z.; Levanon, H.; Wiehe, A.; Kurreck, H. J. Phys.
Chem. A 2001, 105, 10060.
Soc. 1987, 109, 305.
(38) The hfc values were also calculated using the B3LYP and ADF
method. Of all the computational methods and basis sets tested, the BLYP/
6-31G(d) basis set predicts the hfc values in closest agreement with
experimental results in Figure 1 and Figure 3 (see S8, S9).
(39) The calculated energy of Ph-6-Q with a structure without hydrogen
bond formation is by 14.8 kJ mol-1 higher than that with the optimized
structure (type A of Ph-6-Q); the calculations were performed using the
BLYP/6-31G(d) basis set with the RHF formalism in Gaussian 98 program.
1
(40) The ET processes from ZnP* to Q in ZnP-CONH-Q in several
solvents are too fast to be determined by the fluorescence decay.
(41) The Rcc distances were estimated by the structures, which were
provided by adding the optimized structure of ZnP calculated by the ADF
calculation with II (large) basis set to Ph-CONH-Q and Ph-n-Q.
(42) The kET value is known to decrease with increasing the distance
0
(Ree), obeying kET ) kET exp(-âRee).43 From the distance dependence of
kET values in ZnP-CONH-Q and ZnP-n-Q (n ) 3, 6, 10) in several
solvents using the Ree values of ZnP-CONH-Q and ZnP-n-Q (n ) 3, 6,
10) in Table 1, the â values were determined by the slope as 1.14 Å-1 in
MeCN, 1.15 Å-1 in PhCN, 1.07 Å-1 in CH2Cl2, 1.01 Å-1 in THF, and
1.08 Å-1 in toluene. The â values between 1.01 and 1.15 Å-1 agree with
those reported previously for saturated hydrocarbon spacers (0.8-
14,43a-c
1.4 Å-1
)
or protein (1.0-1.4 Å-1).43d,e
(43) (a) Kumar, K.; Lin, Z.; Waldeck, D. H.; Zimmit, M. B. J. Am.
Chem. Soc. 1996, 118, 243. (b) Han, H.; Zimmt, M. B. J. Am. Chem. Soc.
1998, 120, 8001. (c) Kaplan, R. W.; Napper, A. M.; Waldeck, D. H.; Zimmt,
M. B. J. Am. Chem. Soc. 2000, 122, 12039. (d) Jolliffe, K. A.; Bell, T. D.
M.; Ghiggino, K. P.; Langford, S. J.; Paddon-Row: M. N. Angew. Chem.,
Int. Ed. 1998, 37, 915. (e) Winkler, J. R.; Gray, H. B. Chem. ReV. 1992,
92, 369.
(24) In other donor-acceptor dyads, long-lived charge-separated states
have been attained; see: (a) Imahori, H.; Guldi, D. M.; Tamaki, K.; Yoshida,
Y.; Luo, C.; Sakata Y.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 6617.
(b) Fukuzumi, S.; Ohkubo, K.; Imahori, H.; Shao, J.; Ou, Z.; Zheng, G.;
Chen, Y.; Pandey, R. K.; Fujitsuka, M.; Ito, O.; Kadish, K. M. J. Am. Chem.
Soc. 2001, 123, 10676. (c) Ohkubo, K.; Kotani, H.; Shao, J.; Ou, Z.; Kadish,
K. M.; Li, G.; Pandey, R. K.; Fujitsuka, M.; Ito, O.; Imahori, H.; Fukuzumi,
S. Angew. Chem., Int. Ed. 2004, 43, 853. (d) Fukuzumi, S. Kotani, H.;
Ohkubo, K.; Ogo, S.; Tkachenko, N. V.; Lemmetyinen, H. J. Am. Chem.
Soc. 2004, 126, 1600.
(44) Fajer, J.; Borg, D. C.; Forman, A.; Dolphin, D.; Felton, R. H. J.
Am. Chem. Soc. 1970, 92, 3451.
(45) Fukuzumi, S.; Nakanishi, I.; Maruta, J.; Yorisue, T.; Suenobu, T.;
Itoh, S.; Arakawa, R.; Kadish, K. M. J. Am. Chem. Soc. 1998, 120, 6673.
(46) (a) Marcus, R. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1111.
(b) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265.
(25) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R., Purification of
Laboratory Chemicals, 4th ed.; Pergamon: Elmsford, NY, 1996.