V. Gududuru et al. / Bioorg. Med. Chem. Lett. 14 (2004) 5289–5293
5293
5. Foster, C. S.; Bostwick, D. G.; Bonkhoff, H.; Damber, J.
E.; van der Kwast, T.; Montironi, R.; Sakr, W. A. Scand.
J. Urol. Nephrol. 2000, 205, 19.
6. Agus, D. B.; Cordon-Cardo, C.; Fox, W.; Drobnjak, M.;
Koff, A.; Golde, D. W.; Scher, H. I. J. Natl. Cancer. Inst.
1999, 91, 1869.
7. Djakiew, D. Prostate 2000, 42, 150.
8. Frydenberg, M.; Stricker, P. D.; Kaye, K. W. Lancet 1997,
349, 1681.
9. Beedassy, A.; Cardi, G. Sem. Oncol. 1999, 26, 428.
10. Raghavan, D.; Koczwara, B.; Javis, M. Eur. J. Cancer
1997, 33, 566.
11. Gududuru, V.; Hurh, E.; Durgam, G. G.; Hong, S. S.;
Sardar, V. M.; Xu, H.; Dalton, J. T.; Miller, D. D. Bioorg.
Med. Chem. Lett. 2004, 14, 4919.
12. Jasinska, R.; Zhang, Q. X.; Pilquil, C.; Singh, I.; Xu, J.;
Dewald, J.; Dillon, D. A.; Berthiaume, L. G.; Carman, G.
M.; Waggoner, D. W.; Brindley, D. N. Biochem. J. 1999,
340, 677.
13. Xu, J.; Love, L. M.; Singh, I.; Zhang, Q. X.; Dewald, J.;
Wang, D. A.; Fischer, D. J.; Tigyi, G.; Berthiaume, L. G.;
Waggoner, D. W.; Brindley, D. N. J. Biol. Chem. 2000,
275, 27520.
14. Hooks, S. B.; Santos, W. L.; Im, D. S.; Heise, C. E.;
Macdonald, T. L.; Lynch, K. R. J. Biol. Chem. 2001, 276,
4611.
15. Andres, C. J.; Bronson, J. J.; DꢀAndrea, S. V.; Deshpande,
M. S.; Falk, P. J.; Young, K. A.; Harte, W. E.; Ho, H. T.;
Misco, P. F.; Robertson, J. G.; Stock, D.; Sun, Y.; Walsh,
A. W. Bioorg. Med. Chem. Lett. 2000, 10, 715.
16. Homes, C. P.; Chinn, J. P.; Look, C. G.; Gordon, E. M.;
Gallop, M. A. J. Org. Chem. 1995, 60, 7328.
17. Schuemacher, A. C.; Hoffman, R. W. Synthesis 2001, 22,
243.
18. Compounds were obtained as mixtures of diastereomers
and were used as such for the biological studies. Charac-
teristic data for some compounds are given below.
Compound 8: 1H NMR (300MHz, CDCl3): d 0.89 (t,
J = 6.0Hz, 3H), 1.26 (br s, 30H), 1.46 (m, 2H), 3.16–3.29
(m, 3H), 3.82 (d, J = 1.5Hz, 2H), 4.20(s, 0.5H), 4.25 (s,
0.5H), 5.83–5.85 (m, 2H), 7.27–7.41 (m, 5H); 13C NMR
(300MHz, CDCl3): d 13.55, 22.13, 26.30, 28.69, 28.80,
28.88, 28.99, 29.03, 29.10, 29.14, 31.37, 32.13, 39.08, 45.88,
63.67, 127.05, 128.58, 128.96, 137.61, 166.30, 171.61; MS
(ESI) m/z 511 [M+Na]. Anal. Calcd for C29H48N2O2S: C,
71.26; H, 9.90; N, 5.73. Found: C, 71.18; H, 10.03; N, 5.79.
Compound 11: 1H NMR (300MHz, CDCl3): d 0.89 (t,
J = 6.0Hz, 3H), 1.26 (br s, 30H), 1.33 (s, 2H), 3.16–3.19
(m, 1H), 3.2–3.29 (m, 2H), 3.80(d, J = 0.9Hz, 2H), 3.83 (s,
3H), 4.16 (s, 0.5H), 4.21 (s, 0.47H), 5.82 (s, 1H), 6.9 (dd,
J = 1.8Hz, 2H), 7.29 (dd, J = 1.5Hz, 2H); 13C NMR
(300MHz, CDCl3): d 13.53, 22.12, 26.31, 28.70, 28.74,
28.79, 28.89, 28.99, 29.03, 29.09, 29.13, 31.36, 32.23, 39.06,
45.74, 54.79, 63.44, 128.64, 129.11, 159.97, 166.41, 171.47;
MS (ESI) m/z 541 [M+Na]. Anal. Calcd for C30H50N2O3S:
C, 69.45; H, 9.71; N, 5.40. Found: C, 69.30; H, 9.86; N,
1
5.43. Compound 12: H NMR (300MHz, CDCl3): d 3.54
(d, J = 15.3Hz, 1H), 3.87 (s, 2H), 4.25 (d, J = 15.3Hz,
1H), 5.88 (s, 1H), 7.10(t, J = 1.8Hz, 1H), 7.36–7.43 (m,
7H), 8.29 (s, 1H); 13C NMR (300MHz, CDCl3): d 32.35,
46.73, 64.40, 117.37, 123.85, 127.29, 128.74, 129.32,
134.59, 136.87, 138.61, 165.14, 172.60; MS (ESI) m/z 403
[M+Na]. Anal. Calcd for C17H14Cl2N2O2S: C, 53.55; H,
3.70; N, 7.35. Found: C, 53.39; H, 3.47; N, 7.36.
Compound 21: 1H NMR (300MHz, CDCl3): d 0.89 (t,
J = 6.0Hz, 3H), 1.26 (br s, 32H), 3.19–3.34 (m, 3H), 3.88–
4.03 (dd, J = 16.5Hz, 2H), 4.66 (s, 0.5H), 4.72 (s, 0.5H),
5.67 (br s, 1H), 5.95 (s, 1H), 7.38 (m, 2H), 7.50–7.53 (m,
3H); 13C NMR (300MHz, CDCl3): d 13.54, 22.12, 26.26,
28.66, 28.79, 28.96, 29.02, 29.09, 29.14, 31.36, 39.30, 44.35,
49.85, 81.32, 125.77, 128.43, 128.91, 130.55, 163.23,
165.30; MS (ESI) m/z 519 [MÀH]. Anal. Calcd for
C29H48N2O4S: C, 66.88; H, 9.29; N, 5.38. Found: C,
66.68; H, 9.27; N, 5.41.
19. Thiazolidinone derivatives were dissolved in dimethyl
sulfoxide (DMSO) and serially diluted in complete growth
medium to desired final concentrations at DMSO concen-
trations of less than 0.5%. Cells were exposed to a wide
range of concentrations (0–100lM) of the particular
compound for 96h in 96 well plates. Cells were fixed with
10% trichloroacetic acid and washed five times with water.
The plates were air dried overnight and fixed cells were
stained with SRB solution. The cellular protein-bound
SRB was measured at 540nm using a plate reader. Cell
numbers at the end of the treatment were measured. IC50
(i.e., concentration that inhibited cell growth by 50% of
untreated control) values were obtained by nonlinear
regression analysis using WinNonlin.