C O M M U N I C A T I O N S
Table 2. Scope of the Rearrangementa
selective approach to allylic amines. This reaction is tolerant of a
range of substitution patterns, and by choosing appropriate com-
binations of reactants (allylic alcohol and azide source), the
preparation of a wide range of allylic amine products can readily
be envisioned. It thus serves as a valuable and versatile addition to
the current approaches for the preparation of these valuable synthetic
intermediates.
Acknowledgment. A.K.M is grateful for financial support from
the NIH (GM65330), the Burroughs Wellcome Fund (New Inves-
tigator in the Toxicological Sciences), and the March of Dimes
(Basil O’Connor Starter Scholar). We thank Prof. M. Sanford for
a critical reading of the manuscript.
Note Added in Proof. A related transformation catalyzed by
palladium was recently communicated by Batey and Lee. See
Angew. Chem., Int. Ed. 2004, 43, 1865-1868.
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. This material is available
References
(1) (a) Wipf, P. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5; p 827. (b) Ziegler, F. E.
Chem. ReV. 1988, 88, 1423-1452. (c) Nubbemeyer, U. Synthesis 2003,
7, 961-1008. (d) Enders, D.; Knopp, M.; Schiffers, R. Tetrahedron
Asymmetry 1996, 7, 1847-1882.
(2) For key examples see: (a) Overman, L. E. J. Am. Chem. Soc. 1976, 98,
2901-2910. (b) Overman, L. E. Acc. Chem. Res. 1980, 13, 218-224. (c)
Overman, L. E. Angew. Chem., Int. Ed. Engl. 1984, 23, 579-586. (d)
Tamaru, Y.; Kagotani, M.; Yoshida, Z. I. J. Org. Chem. 1980, 45, 5221-
5223.
(3) Johannsen, M.; Jorgensen, K. A. Chem. ReV. 1998, 98, 1689-1708.
(4) Recent advances in allylic amine synthesis: (a) Anderson, C. E.; Overman,
L. E. J. Am. Chem. Soc. 2003, 125, 12412-12413. (b) Wipf, P.; Kendall,
C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2003, 125, 761-768. (c) Evans,
P. A.; Robinson, J. E.; Nelson, J. D. J. Am. Chem. Soc. 1999, 121, 6761-
6762. (d) Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc. 1998, 120,
11798-11799. (e) Denmark, S. E.; Nakajima, N.; Nicaise, O. J. C. J.
Am. Chem. Soc. 1994, 116, 8797-8798. (f) Buchwald, S. L.; Watson, B.
T.; Wannamaker, M. W.; Dewan, J. C. J. Am. Chem. Soc. 1989, 111,
4486-4494.
(5) Challis, B. C.; Challis, J. A.; Iley, J. N. J. Chem. Soc., Perkin Trans. 2
1978, 813-818.
(6) For discussions of the structure and reactivity of the PdN bond see: (a)
Johnson, A. W. Ylides and Imines of Phosphorus; John Wiley & Sons:
1993; Chapter 13. (b) Albright, T. A.; Freeman, W. J.; Schweizer, E. E.
J. Org. Chem. 1976, 41, 2716-2720. (c) Reference 7a.
(7) (a) Barluenga, J.; Palacios, F. Org. Prep. Proced. Int. 1991, 23, 1-65.
(b) Eguchi, S.; Matsushita, Y.; Yamashita, K. Org. Prep. Proced. Int.
1992, 24, 209-249. (c) Molina, P.; Vilaplana, M. J. Synthesis 1994, 1197-
1218.
a Conditions as described in Table 1. Additional details are available in
b
the Supporting Information. Due to the volatility of allyl azide, an excess
c
d
(3 equiv) was used. Isolated yield after purification. The E-olefin isomer
1
was produced with >20:1 selectivity as determined by H NMR analysis
of the crude reaction mixture.
for the final protecting group (Table 2, entries 10 and 11). The
amine is also protected as a phosphoramidate, an excellent
protecting group imparting stability under a variety of reaction
conditions.9 It can readily be removed, however, by treatment with
a nucleophilic thiol10 followed by acid hydrolysis.11 In the case of
phosphoramidate 11, for example, treatment with ethanethiolate
followed by HCl/MeOH provided the benzyl-protected amine
product in excellent (90%) yield.
(8) (a) Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1981,
37, 437-472. (b) Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992,
48, 1353-1406.
(9) (a) Ramage, R.; Hopton, D.; Parrott, M. J.; Kenner, G. W.; Moore, G. A.
J. Chem. Soc., Perkin Trans. 1 1984, 1357-1367. (b) Zhao, Y.-F.; Xi,
S.-K.; Song, A.-T.; Ji, G.-J. J. Org. Chem. 1984, 49, 4549-4551.
(10) (a) Thuong, N. T.; Chassignol, M.; Asseline, U.; Chabrier, P. Bull. Soc.
Chim. Fr. 1981, 1-2(II), 55-57. (b) Dahl, B. H.; Bjergårde, K.;
Henriksen, L.; Dahl, O. Acta Chem. Scand. 1990, 44, 639-641.
(11) (a) Kelley, J. L.; McLean, E. W.; Crouch, R. C.; Averett, D. R.; Tuttle,
J. V. J. Med. Chem. 1995, 38, 1005-1014. (b) Modro, T. A.; Lawry, M.
A.; Murphy, E. J. Org. Chem. 1978, 43, 5000-5006.
In summary, we have disclosed a unique [3,3]-rearrangement of
allylic phosphorimidates to phosphoramidates as a facile and
JA0490469
9
J. AM. CHEM. SOC. VOL. 126, NO. 17, 2004 5365