Page 7 of 10
ACS Catalysis
4-Selective Pyridine Functionalization Reactions via Heterocyclic
(8) (a) Kröhnke, F. The Specific Synthesis of Pyridines and
Oligopyridines. Synthesis 1976, 1976, 1−24. (b) Murakami, K.;
Yamada, S.; Kaneda, T.; Itami, K. C–H Functionalization of
Azines. Chem. Rev. 2017, 117, 9302−9332. (c) Feng, J.; Holmes, M.;
Krische, M. J. Acyclic Quaternary Carbon Stereocenters via
Enantioselective Transition Metal Catalysis. Chem. Rev. 2017, 117,
12564−12580.
(9) (a) Yan, M.; Lo, J. L. C.; Edwards, J. T.; Baran, P. S.
Radicals: Reac-tive Intermediates with Translational Potential. J.
Am. Chem. Soc. 2016, 138, 12692−12714. (b) Studer, A.; Curran, D.
Phosphonium Salts. Synlett 2018, 29, 8−14. (f) Moser, D.; Duan,
Y.; Wang, F.; Ma, Y.; O’Neill, M. J.; Cornella, J. Selective
Functionalization of Aminoheterocycles by a Pyrylium Salt
Angew. Chem., Int. Ed. 2018, 57, 11035−11039. (g) Zhang, X.;
McNally, A. Cobalt-Catalyzed Alkylation of Drug-Like Molecules
and Pharmaceuticals Using Heterocyclic Phosphonium Salts.
ACS Catal. 2019, 9, 4862−4866.
(5) For selected examples of the metal-catalyzed C-H
alkylation of pyridines (a) Lewis, J. C.; Bergman, R. G.; Ellman, J.
A. Rh(I)-Catalyzed Alkylation of Quinolines and Pyridines via C–
H Bond Activation. J. Am. Chem. Soc. 2007, 129, 5332−5333. (b)
Nakao, Y.; Kanyiva, K. S.; Hiyama, T. A Strategy for C−H
Activation of Pyridines: Direct C-2 Selective Alkenylation of
Pyridines by Nickel/Lewis Acid Catalysis. J. Am. Chem. Soc.
2008, 130, 2448−2449. (c) Nakao, Y.; Yamada, Y.; Kashihara, N.;
Hiyama, T. Selective C-4 Alkylation of Pyridine by Nickel/Lewis
Acid Catalysis. J. Am. Chem. Soc. 2010, 132, 13666–13668. (d) Guo,
P.; Joo, J. M.; Rakshit, S.; Sames, D. C–H Arylation of Pyridines:
1
2
3
4
5
6
7
8
P. Catalysis of Radical Reactions:
A Radical Chemistry
9
Perspective. Angew. Chem., Int. Ed. 2016, 55, 58−102. (c) Xuan, J.;
Studer, A. Radical Cascade Cyclization of 1,n-Enynes and Diynes
for the Synthesis of Carbocycles and Heterocycles. Chem. Soc.
Rev. 2017, 46, 4329−4346. (d) Smith, J. M.; Harwood, S. J.; Baran,
P. S. Radical Retrosynthesis. Acc. Chem. Res. 2018, 51, 1807−1817.
(10) For selected examples of the radical based pyridylation
reactions (a) Lima, F.; Kabeshov, M.; Tran, A. D. N.; Battilocchio,
C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V. Visible
Light Activation of Boronic Esters Enables Efficient Photoredox
C(sp2)-C(sp3) Cross-Couplings in Flow. Angew. Chem., Int. Ed.
2016, 55, 14085−14089. (b) Boyington, A. J.; Riu, M. Y.; Jui, N. T.
Anti-Markovnikov Hydroarylation of Unactivated Olefins via
Pyridyl Radical Intermediates. J. Am. Chem. Soc. 2017, 139, 6582–
6585. (c) Zhang, X.; Feng, X.; Zhou, C.; Yu, X.; Yamamoto, Y.; Bao,
M. Transition-Metal-Free Decarboxylative Arylation of 2-
Picolinic Acids with Arenes under Air Conditions. Org. Lett.
2018, 20, 7095−7099. (d) Seath, C. P.; Vogt, D. B.; Xu, Z.;
Boyington, A. J.; Jui, N. T. Radical Hydroarylation of
Functionalized Olefins and Mechanistic Investigation of
Photocatalytic Pyridyl Radical Reactions. J. Am. Chem. Soc. 2018,
140, 15525−15534. (e) Lei, Y.; Yang, J.; Qi, R.; Wang, S.; Wang, R.;
Xu, Z. Arylation of Benzyl Amines with Aromatic Nitriles. Chem.
Commun. 2018, 54, 11881−11884. (f) Sun, A. C.; McClain, E. J.;
Beatty, J. W.; Stephenson, C. R. J. Visible Light-Mediated
Decarboxylative Alkylation of Pharmaceutically Relevant
Heterocycles. Org. Lett. 2018, 20, 3487−3490. (g) He, Y.; Kang,
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
High Regioselectivity as
a Consequence of the Electronic
Character of C–H Bonds and Heteroarene Ring. J. Am. Chem.
Soc. 2011, 133, 16338−16341. (e) Guan, B.-T.; Hou, Z. Rare-Earth-
Catalyzed C–H Bond Addition of Pyridines to Olefins. J. Am.
Chem. Soc. 2011, 133, 18086−18089. (f) Ye, M.; Gao, G.-L.; Yu, J.-Q.
Ligand-Promoted C-3 Selective C–H Olefination of Pyridines
with Pd Catalysts. J. Am. Chem. Soc. 2011, 133, 6964−6967. (g)
Ryu, J.; Cho, S. H.; Chang, S. A Versatile Rhodium(I) Catalyst
System for the Addition of Heteroarenes to both Alkenes and
Alkynes by a C–H Bond Activation. Angew. Chem., Int. Ed. 2012,
51, 3677–3681. (h) Andou, T.; Saga, Y.; Komai, H.; Matsunaga, S.;
Kanai, M. Cobalt–Catalyzed C4–Selective Direct Alkylation of
Pyridines. Angew., Chem. Int. Ed. 2013, 52, 3213–3216. (i) Xiao, B.;
Liu, Z.-J.; Liu, L.; Fu, Y. Palladium-Catalyzed C–H
Activation/Cross-Coupling
of
Pyridine
N-Oxides
with
Nonactivated Secondary Alkyl Bromides. J. Am. Chem. Soc. 2013,
135, 616–619. (j) Fischer, D. F.; Sarpong, R. Total Synthesis of (+)-
Complanadine A Using an Iridium-Catalyzed Pyridine C−H
Functionalization. J. Am. Chem. Soc. 2010, 132, 5926–5927. (k)
Song, G.; O, W. W. N.; Hou, Z. Enantioselective C–H Bond
Addition of Pyridines to Alkenes Catalyzed by Chiral Half-
Sandwich Rare-Earth Complexes. J. Am. Chem. Soc. 2014, 136,
12209–12212. (l) Xie, H.; Shao, Y.; Gui, J.; Lan, J.; Liu, Z.; Ke, Z.;
Deng, Y.; Jiang, H.; Zeng, W. Co(II)-Catalyzed Regioselective
Pyridine C–H Coupling with Diazoacetates. Org. Lett. 2019, 21,
3427−3430.
(6) (a) Schlosser, M.; Mongin, F. Pyridine Elaboration through
Organometallic Intermediates: Regiochemical Control and
Completeness. Chem. Soc. Rev. 2007, 36, 1161−1172. (b) Andersson,
H.; Almqvist, F.; Olsson, R. Synthesis of 2-Substituted Pyridines
via a Regiospecific Alkylation, Alkynylation, and Arylation of
Pyridine N-Oxides. Org. Lett. 2007, 9, 1335–1337. (c) Zhang, F.;
Duan, X.-F. Facile One-Pot Direct Arylation and Alkylation of
Nitropyridine N-Oxides with Grignard Reagents. Org. Lett. 2011,
13, 6102–6105.
D.;
Kim,
I.;
Hong,
S.
Metal-Free
Photocatalytic
Trifluoromethylative Pyridylation of Unactivated Alkenes. Green
Chem. 2018, 20, 5209−5214. (h) Chen, D.; Xu, L.; Long, T.; Zhu, S.;
Yang, J.; Chu, L. Metal-Free, Intermolecular Carbopyridylation of
Alkenes via Visible-Light-Induced Reductive Radical Coupling.
Chem. Sci., 2018, 9, 9012−9017. (i) Zhu, S.; Qin, J.; Wang, F.; Li, H.;
Chu, L. Photoredox-Catalyzed Branch-Selective Pyridylation of
Alkenes for the Expedient Synthesis of Triprolidine. Nat.
Commun. 2019, 10, 749. (j) Boyington, A. J.; Seath, C. P.; Zearfoss,
A. M.; Xu, Z. Jui, N. T. Catalytic Strategy for Regioselective
Arylethylamine Synthesis. J. Am. Chem. Soc. 2019, 141, 4147−4153.
(11) For selected examples of Minisci alkylation of N-
heteroarenes (a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.;
Perchinummo, M. Nucleophilic Character of Alkyl Radicals-VI: A
New Convenient Selective Alkylation of Heteroaromatic Bases.
Tetrahedron 1971, 27, 3575–3579. (b) Minisci, F.; Citterio, A.;
Giordano, C. Electron-Transfer Processes: Peroxydisulfate, a
Useful and Versatile Reagent in Organic Chemistry. Acc. Chem.
Res. 1983, 16, 27−32. (c) Minisci, F.; Vismara, E.; Fontana, F.
Recent Developments of Free-Radical Substitutions of
Heteroaromatic Bases. Heterocycles, 1989, 28, 489−519. (d)
Cheng, W.; Shang, R.; Fu, Y. Photoredox/Brønsted Acid Co-
Catalysis Enabling Decarboxylative Coupling of Amino Acid and
Peptide Redoxactive Esters with N-Heteroarenes. ACS Catal.
2017, 7, 907−911. (e) Cheng, W.; Shang, R.; Fu, M.; Fu, Y.
Photoredox-Catalysed Decarboxylative Alkylation of N-
Heteroarenes with N-(Acyloxy)phthalimides. Chem. -Eur. J. 2017,
23, 2537−2541. (f) Wu, X.; Zhang, H.; Tang, N.; Wu, Z.; Wang, D.;
Ji, M.; Xu, Y.; Wang, M.; Zhu, C. Metal-Free Alcohol-Directed
Regioselective Heteroarylation of Remote Unactivated C(sp3)–H
(7) (a) Nakao, Y. Transition-Metal-Catalyzed CH
Functionalization for the Synthesis of Substituted Pyridines.
Synthesis 2011, 20, 3209–3219. (b) Zhang, X.; McNally, A.
Phosphonium Salts as Pseudohalides: Regioselective Nickel-
Catalyzed Cross-Coupling of Complex Pyridines and Diazines.
Angew. Chem., Int. Ed. 2017, 56, 9833−9836. (c) Diesel, J.;
Finogenova, A. M.; Cramer, N. Nickel-Catalyzed Enantioselective
Pyridone C–H Functionalizations Enabled by
a Bulky N-
Heterocyclic Carbene Ligand. J. Am. Chem. Soc. 2018, 140,
4489−4493. (d) Zhang, W. -B.; Yang, X. -T., Ma, J. -B.; Su, Z. -M.;
Shi, S. -L. Regio- and Enantioselective C–H Cyclization of
Pyridines with Alkenes Enabled by a Nickel/N-Heterocyclic
Carbene Catalysis. J. Am. Chem. Soc. 2019, 141, 5628−5634.
ACS Paragon Plus Environment