Macromolecules, Vol. 38, No. 10, 2005
Communications to the Editor 4063
References and Notes
(1) (a) Strzelecka, T. E.; Davidson, M. W.; Rill, R. L. Nature
(London) 1988, 331, 457-460. (b) Livolant, F.; Levelut, A.
M.; Doucet, J.; Benoit, J. P. Nature (London) 1989, 339,
724-726.
(2) (a) Fortin, S.; Charlet, G. Macromolecules 1989, 22, 2286-
2292. (b) Inatomi, S.; Jinbo, Y.; Sato, T.; Teramoto, A.
Macromolecules 1992, 25, 5013-5019.
(3) (a) Robinson, C.; Ward, J. C. Nature (London) 1957, 180,
1183-1184. (b) Tsujita, Y.; Yamanaka, I.; Takizawa, A.
Polym. J. 1979, 11, 749-754. (c) Yu, S. M.; Conticello, V.
P.; Zhang, G.; Kayser, C.; Fournier, M. J.; Mason, T. L.;
Tirrel, D. A. Nature (London) 1997, 389, 167-170.
(4) (a) Wen, X.; Meyer, R. B.; Casper, D. L. D. Phys. Rev. Lett.
1989, 63, 2760-2763. (b) Dogic, Z.; Fraden, S. Phys. Rev.
Lett. 1997, 78, 2417-2420.
(5) (a) Sato, T.; Sato, Y.; Umemura, Y.; Teramoto, A.; Naga-
mura, Y.; Wagner, J.; Weng, D.; Okamoto, Y.; Hatada, K.;
Green, M. M. Macromolecules 1993, 26, 4551-4559. (b)
Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Cook,
R.; Lifson, S. Science 1995, 268, 1860-1866. (c) Green, M.
M.; Zanella, S.; Gu, H.; Sato, T.; Gottarelli, G.; Jha, S. K.;
Spada, G. P.; Schoevaars, A. M.; Feringa, B.; Teramoto, A.
J. Am. Chem. Soc. 1998, 120, 9810-9817.
(6) (a) Watanabe, J.; Kamee, H.; Fujiki, M. Polym. J. 2001, 33,
495-497. (b) Okoshi, K.; Kamee. H.; Suzaki, G.; Fujiki, M.;
Watanabe, J. Macromolecules 2002, 35, 4556-4559.
(7) (a) Kim, J.; Novak, B. M.; Waddon, A. J. Macromolecules
2004, 37, 1660-1662. (b) Kim, J.; Novak, B. M.; Waddon,
A. J. Macromolecules 2004, 37, 8286-8292.
Figure 4. Bright-field TEM image of an ultramicrotomed cast
film of a cholesteric LC of poly-L-1. The film was cross-
sectioned (about 60 nm thickness) at room temperature
perpendicular to the surface using a diamond knife and stained
in ruthenium tetroxide (RuO4) vapor for 7 min on a copper
microgrid (200 mesh) before the TEM observation. Scale bar
represents 200 nm.
(8) He, S.-J.; Lee, C.; Gido, S. P.; Yu, S. M.; Tirrel, D. A.
Macromolecules 1998, 31, 9387-9389.
(9) Maeda, K.; Takeyama, Y.; Sakajiri, K.; Yashima, E. J. Am.
Chem. Soc. 2004, 126, 16284-16285.
(10) (a) Akagi, K.; Shirakawa, H. In Electrical and Optical
Polymer Systems; Donald, L. W., Ed.; Marcel Dekker: New
York, 1998; Chapter 28. (b) Lam, J. W. Y.; Tang, B. Z. J.
Polym. Sci., Part A: Polym. Chem. 2003, 41, 2607-2629.
Poly(phenylacetylene)s bearing long alkyl chains as the
pendants were reported to show thermotropic LC phases,
but their detailed LC structures have not yet been identified.
See: (c) Schenning, A. P. H. J.; Fransen, M.; Meijer, E. W.
Macromol. Rapid Commun. 2002, 23, 265-270. (d) Percec,
V.; Obata, M.; Rudick, J. G.; De, B. B.; Glodde, M.; Bera, T.
K.; Magonov, S. N.; Balagurusamy, V. S. K.; Heiney, P. A.
J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3509-
3533.
the knife and the cholesteric helical axis, corresponding
to the half helical pitch of the cholesteric twist. Thus,
the pitch should have moved from several microns in
the liquid crystal phase in the solution to less than 300
nm in the solid across the visible light region during
the solvent evaporation.
In summary, we found that novel poly(phenylacet-
ylene)s bearing L-, D-, and racemic DL-alanine pendants
formed lyotropic cholesteric or nematic LCs due to the
exceptional stiffness of their polymer backbones. Al-
though the origin of this remarkable stiffness of these
polyacetylenes has not yet been clearly elucidated, to
the best of our knowledge, the present study is the first
observation of well-defined cholesteric and nematic LCs
formed in optically active and inactive polyacetylenes
based on the main-chain stiffness with a macromolecu-
lar helicity in organic solvents.
(11) Maeda, K.; Morino, K.; Okamoto, Y.; Sato, T.; Yashima, E.
J. Am. Chem. Soc. 2004, 126, 4329-4342.
(12) (a) Simionescu, C. I.; Percec, V.; Dumitrescu, S. J. Polym.
Sci., Polym. Chem. Ed. 1977, 15, 2497-2509. (b) Kishimoto,
Y.; Eckerle, P.; Miyatake, T.; Kainosho, M.; Ono, A.; Ikariya,
T.; Noyori, R. J. Am. Chem. Soc. 1999, 121, 12035-
12044.
(13) Bushin, S. V.; Tsvetkov, V. N.; Lysenko, E. B.; Emelyanov,
V. N. Vyskomol. Soedin., Ser. A 1981, A23, 2494-2503.
(14) Bohdanecky, M. Macromolecules 1983, 16, 1483-1492.
(15) (a) Yamakawa, H.; Fujii, M. Macromolecules 1974, 7, 128-
135. (b) Yamakawa, H.; Yoshizaki, T. Macromolecules 1980,
13, 633-643.
(16) Ashida, Y.; Sato, T.; Morino, K.; Maeda, K.; Okamoto, Y.;
Yashima, E. Macromolecules 2003, 36, 3345-3350.
(17) (a) Cornelissen, J. J. L. M.; Donners, J. J. M.; de Gelder,
R.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.;
Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 2001, 293,
676-680. (b) Samor´ı, P.; Ecker, C.; Go¨sell, I.; de Witte, P.
A. J.; Cornelissen, J. J. L. M.; Metselaar, G. A.; Otten, M.
B. J.; Rowan, A. E.; Nolte, R. J. M.; Rabe, J. P. Macromol-
ecules 2002, 35, 5290-5294.
(18) (a) Nomura, R.; Tabei, J.; Masuda, T. J. Am. Chem. Soc.
2001, 123, 8430-8431. (b) Nomura, R.; Tabei, J.; Nishiura,
S.; Masuda, T. Macromolecules 2003, 36, 561-564.
(19) Intra- and intermolecular hydrogen bondings have also been
used in foldamers, some of which are stable in water like
biological systems. For examples, see: (a) Hirschberg, J. H.
K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.;
Sijbesma, R. P.; Meijer, E. W. Nature (London) 2000, 407,
167-170. (b) Cary, J. M.; Moore, J. S. Org. Lett. 2002, 4,
4663-4666.
We expect that related helical polyacetylenes bearing
other amino acid residues and functional groups10,18,20,23
will also form lyotropic and/or thermotropic LC phases,
and such LC polyacetylenes may provide novel chiral
materials for optical switching, sensors, and display
devices.
Acknowledgment. We are deeply grateful to Pro-
fessor T. Sato (Osaka University) for his fruitful dis-
cussions. We also thank Dr. M. Awano and Ms. Y. Hu
at the National Institute of Advanced Industrial Science
and Technology (AIST) for their kind help with the TEM
observations.
Supporting Information Available: Detailed experi-
mental procedures and HPLC chromatograms of the enantio-
separation of the monomers (L-1, D-1, and DL-1). This ma-
terial is available free of charge via the Internet at http://
pubs.acs.org.
(20) Tang et al. and Masuda et al. independently synthesized
helical polyacetylenes bearing various amino acids as the
pendants, and their chiroptical properties including their