C O M M U N I C A T I O N S
Figure 1. Solid-state structures of (a) palladium bis(NHC) complex 1, (b) peroxo complex 3, and (c) peroxocarbonate complex 2. Hydrogens, disordered
aromatic rings, and solvents are omitted for clarity. All carbene rings, phenyl rings on each nitrogen, and palladacycles are illustrated as colored planes.
Scheme 2
Supporting Information Available: All experimental procedures
and spectroscopic data of ITmt and 1-3; IR monitoring of the reaction
of 1 with air; space filling model of 3 and 6; CIF files for 1-3. This
References
(1) Calvin, M. Angew. Chem., Int. Ed. Engl. 1962, 1, 65-75.
(2) Emsley, J. The Elements, 3rd ed.; Oxford University Press: New York,
1998.
(3) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and
Application of Organotransition Metal Chemistry; University Science
Books: Mill Valley, CA, 1987.
(4) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals;
John Wiley & Sons: New York, 2001.
(5) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. ReV. 1995, 95, 259-272.
(6) Behr, A. Angew. Chem., Int. Ed. Engl. 1988, 27, 661-678.
(7) Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci., Part B: Polym. Lett.
1969, 7, 287-292.
due to the CdO vibration at 1637 and 1673 cm-1 began to develop.
After 3 h, the complete formation of the peroxocarbonate complex
2 was confirmed by comparison of IR spectrum with that of the
independently synthesized 2. During the solid-state reaction, a
characteristic peak of the palladium peroxo complex 3 was observed
at 1260 and 1300 cm-1 although most of the signals due to the
NHC ligands showed no significant changes.
The difference in reactivity among these PdL2 species can be
explained in terms of the difference in the steric factor between
ITmt and other monodentate ligands. Pd(PCy3)2, Pd(PtBu3)2, and
Pd(IPr)2, which do not react with O2 in air in the solid state, would
cause large steric repulsion between the two cis-positioned ligands
if they formed the corresponding peroxo complexes. Furthermore,
(IMes)2PdO2 (6)18 is likely to have too little space around the central
palladium atom to react with CO2, because the IMes ligand has
four methyl groups in close vicinity of the coordination site. In
contrast, there is a larger space around the central palladium atom
in the peroxo complex 3 without any alkyl groups around the
coordination site, as is apparent from the comparison of the crystal
structures of 3 and 6.29 Further investigations on the application of
ligand ITmt with such structural features to catalytic reactions are
currently in progress.
(8) Darensbourg, D. J.; Holtcamp, M. W. Coord. Chem. ReV. 1996, 153, 155-
174.
(9) Braunstein, P.; Matt, D.; Nobel, D. Chem. ReV. 1988, 88, 747-764.
(10) Zhang, Y. C.; Kaneko, M.; Uchida, K.; Mizusaki, J.; Tagawa, H. J.
Electrochem. Soc. 2001, 148, H81-H84.
(11) Maruyama, T.; Ye, X. Y.; Saito, Y. Solid State Ion. 1987, 23, 113-117.
(12) Goto, K.; Yamamoto, G.; Tan, B.; Okazaki, R. Tetrahedron Lett. 2001,
42, 4875-4877.
(13) Goto, K.; Hino, Y.; Takahashi, Y.; Kawashima, T.; Yamamoto, G.; Takagi,
N.; Nagase, S. Chem. Lett. 2001, 1204-1205.
(14) Shimada, K.; Goto, K.; Kawashima, T.; Takagi, N.; Choe, Y.-K.; Nagase,
S. J. Am. Chem. Soc. 2004, 126, 13238-13239.
(15) Arduengo, A. J., III; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am.
Chem. Soc. 1992, 114, 5530-5534.
(16) The details of preparation of 1 are given in the Supporting Information.
(17) Bohm, V. P. W.; Gstottmayr, C. W. K.; Weskamp, T.; Herrmann, W. A.
J. Organomet. Chem. 2000, 595, 186-190.
(18) Konnick, M. M.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. 2004, 126,
10212-10213.
(19) Gstottmayr, C. W. K.; Bohm, V. P. W.; Herdtweck, E.; Grosche, M.;
Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1363-1365.
(20) Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. Angew. Chem.,
Int. Ed. 2003, 42, 3690-3693.
(21) Arnold, P. L.; Cloke, F. G. N.; Geldbach, T.; Hitchcock, P. B. Organo-
metallics 1999, 18, 3228-3223.
(22) Dibugno, C.; Pasquali, M.; Leoni, P. Inorg. Chim. Acta 1988, 149, 19-
20.
(23) Hayward, P. J.; Blake, D. M.; Nyman, C. J.; Wilkinson, G. J. Chem. Soc.,
Chem. Commun. 1969, 987-988.
(24) Mandal, S. K.; Ho, D. M.; Orchin, M. Organometallics 1993, 12, 1714-
1719.
(25) Yoshida, T.; Tatsumi, K.; Matsumoto, M.; Nakatsu, K.; Nakamura, A.;
Fueno, T.; Otsuka, S. NouV. J. Chim. 1979, 3, 761-774.
(26) Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A. J. Am. Chem.
Soc. 2001, 123, 7188-7189.
Acknowledgment. We thank Prof. Shigehiro Yamaguchi and
Dr. Atsushi Wakamiya at Nagoya University for the measurement
of X-ray crystallography of 3. This work was partly supported by
Grants-in-Aid for The 21st Century COE Program (T.K.) and for
Scientific Research (K.G. and T.K.) from the Ministry of Education,
Culture, Sports, Science and Technology. M.Y. thanks JSPS for a
postdoctoral fellowship.
(27) Jafarpour, L.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem. 2000,
606, 49-54.
(28) The microscopy images and IR spectra are shown in Figures S1-S3 in
the Supporting Information.
(29) The space-filling models of 3 and 6 are shown in Figure S4 in the
Supporting Information.
JA051054H
9
J. AM. CHEM. SOC. VOL. 127, NO. 20, 2005 7295