Organic Letters
Accession Codes
Letter
Synthesis 2016, 48, 1607. (c) Wang, M.; Feng, M.; Tang, B.; Jiang, X.
Recent Advances of Desymmetrization Protocol Applied in Natural
Product Total Synthesis. Tetrahedron Lett. 2014, 55, 7147. (d) Díaz-de-
Villegas, M. D.; Galvez, J. A.; Badorrey, R.; Lopez-Ram-de-Víu, M. P.
Organocatalyzed Enantioselective Desymmetrization of Diols in The
graphic data for this paper. These data can be obtained free of
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; fax: +44 1223 336033.
́
́
Preparation of Chiral Building Blocks. Chem. - Eur. J. 2012, 18, 13920.
́
(e) Enríquez-García, A.; Ku
̈
ndig, E. P. Desymmetrisation of meso-Diols
Mediated by Non-Enzymatic Acyl Transfer Catalysts. Chem. Soc. Rev.
2012, 41, 7803. (f) Muller, C. E.; Schreiner, P. R. Organocatalytic
̈
AUTHOR INFORMATION
Corresponding Authors
Enantioselective Acyl Transfer onto Racemic as well as meso Alcohols,
Amines, and Thiols. Angew. Chem., Int. Ed. 2011, 50, 6012. (g) García-
Urdiales, E.; Alfonso, I.; Gotor, V. Enantioselective Enzymatic
Desymmetrizations in Organic Synthesis. Chem. Rev. 2005, 105, 313.
(h) Willis, M. C. Enantioselective Desymmetrisation. J. Chem. Soc.,
Perkin Trans. 1 1999, 1765. (i) Poss, C. S.; Schreiber, S. L. Two-
Directional Chain Synthesis and Terminus Differentiation. Acc. Chem.
Res. 1994, 27, 9.
(4) For selected examples of the concise asymmetric syntheses of
THPs bearing multiple chiral carbons, see: (a) Northrup, A. B.;
MacMillan, D. W. C. Two-Step Synthesis of Carbohydrates by Selective
Aldol Reactions. Science 2004, 305, 1752. (b) Ishikawa, H.; Sawano, S.;
Yasui, Y.; Shibata, Y.; Hayashi, Y. Asymmetric One-Pot Four-
Component Coupling Reaction: Synthesis of Substituted Tetrahy-
dropyrans Catalyzed by Diphenylprolinol Silyl Ether. Angew. Chem., Int.
Ed. 2011, 50, 3774.
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported financially by the Japanese Ministry of
Education, Culture, Sports, Science and Technology
(15H05845, 16K13994, 17K19120, 18K14214, and
18H04258).K.A.alsoacknowledgestheAsahiGlassFoundation,
Toyota Physical and Chemical Research Institute, Tokyo
Institute of Technology Foundation, the Naito Foundation,
Research Institute for Production Development, the Tokyo
Biochemical Research Foundation, the Uehara Memorial
Foundation, the Kyoto University Foundation, the Institute for
Synthetic Organic Chemistry, Toyo Gosei Memorial Founda-
tion, and the Sumitomo Foundation.
(5) (a) Faul, M. M.; Huff, B. E. Strategy and Methodology
Development for The Total Synthesis of Polyether Ionophore
Antibiotics. Chem. Rev. 2000, 100, 2407. (b) Kang, E. J.; Lee, E. Total
SynthesisofOxacyclicMacrodiolideNaturalProducts. Chem. Rev.2005,
105, 4348. (c) Lorente, A.; Lamariano-Merketegi, J.; Albericio, F.;
́
Alvarez, M. Tetrahydrofuran-ContainingMacrolides:AFascinatingGift
from The Deep Sea. Chem. Rev. 2013, 113, 4567. (d)Aho, J. E.; Pihko, P.
M.; Rissa, T. K. Nonanomeric Spiroketals in Natural Products:
Structures, Sources, and Synthetic Strategies. Chem. Rev. 2005, 105,
4406.
(6) (a) Friedrich, K.; Wallenfels, K. Introduction of The Cyano Group
into the Molecule. In The Chemistry of the Cyano Group; Rappaport, Z.,
Ed.; John Wiley & Sons, 1970; Chapter 2. (b) Fatiadi, A. J. Preparation
and Synthetic Applications of Cyano Compounds. In The Chemistry of
Triple-Bonded Functional Groups; Patai, S., Rappaport, Z., Eds.; John
Wiley & Sons, 1983; Vol. 2, Chapter 26.
(7) Yoneda, N.; Fujii, Y.; Matsumoto, A.; Asano, K.; Matsubara, S.
Organocatalytic Enantio- and Diastereoselective Cycloetherification via
Dynamic Kinetic Resolution of Chiral Cyanohydrins. Nat. Commun.
2017, 8, 1397.
(8) (a) Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael
Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional
Organocatalysts. J. Am. Chem. Soc. 2003, 125, 12672. (b) Okino, T.;
Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. Enantio- and
Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to
Nitroolefins Catalyzed by A Bifunctional Thiourea. J. Am. Chem. Soc.
REFERENCES
■
(1) (a) Singh, J.; Hagen, T. J. Chirality and Biological Activity. Burger’s
Medicinal Chemistry and Drug Discovery 2010, 127, 1 DOI: 10.1002/
Biavatti, M. W.; Vandenabeele, P.; D’Herde, K. Sesquiterpene Lactones
as Drugs with Multiple Targets in Cancer Treatment: Focus on
Parthenolide. Anti-Cancer Drugs 2012, 23, 883. (c) Li, G.; Kusari, S.;
Spiteller, M. Natural Products Containing ‘Decalin’ Motif in Micro-
organisms. Nat. Prod. Rep. 2014, 31, 1175. (d) Lovering, F.; Bikker, J.;
Humblet, C. Escape from Flatland: Increasing Saturation as An
Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752.
(2) For reviews on domino or tandem reactions, see: (a) Tietze, L. F.;
Rackelmann, N. Domino Reactions in The Synthesis of Heterocyclic
Natural Products and Analogs. Pure Appl. Chem. 2004, 76, 1967.
(b) Tietze, L. F.; Modi, A. Multicomponent Domino Reactions for The
Synthesis of Biologically Active Natural Products and Drugs. Med. Res.
Rev. 2000, 20, 304. (c) Tietze, L. F. Domino Reactions in Organic
Synthesis. Chem. Rev. 1996, 96, 115. (d) Tietze, L. F.; Beifuss, U.
SequentialTransformations in OrganicChemistry: A Synthetic Strategy
with a Future. Angew. Chem., Int. Ed. Engl. 1993, 32, 131. (e) Volla, C. M.
R.; Atodiresei, I.; Rueping, M. Catalytic C−C Bond-Forming Multi-
Component Cascade or Domino Reactions: Pushing The Boundaries of
Complexity in Asymmetric Organocatalysis. Chem. Rev. 2014, 114,
2390. (f) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Tandem
Reactions, Cascade Sequences, and Biomimetic Strategies in Total
Synthesis. Chem. Commun. 2003, 551.
́
́
2005, 127, 119. (c) Vakulya, B.; Varga, S.; Csampai, A.; Soos, T. Highly
Enantioselective Conjugate Addition of Nitromethane to Chalcones
Using Bifunctional Cinchona Organocatalysts. Org. Lett. 2005, 7, 1967.
́
́
(d) Hamza, A.; Schubert, G.; Soos, T.; Papai, I. Theoretical Studies on
The Bifunctionality of Chiral Thiourea-Based Organocatalysts:
Competing Routes to C−C Bond Formation. J. Am. Chem. Soc. 2006,
128, 13151. (e) Connon, S. J. Organocatalysis Mediated by (Thio)urea
Derivatives. Chem. - Eur. J. 2006, 12, 5418. (f) Zhu, J.-L.; Zhang, Y.; Liu,
C.; Zheng, A.-M.; Wang, W. Insights into The Dual Activation
Mechanism Involving Bifunctional Cinchona Alkaloid Thiourea
Organocatalysts:AnNMRandDFTStudy.J. Org.Chem.2012,77,9813.
(9) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Redox Economy in
Organic Synthesis. Angew. Chem., Int. Ed. 2009, 48, 2854.
(3) For reviews on enantioselective desymmetrizations, see: (a) Zeng,
X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Catalytic
Enantioselective Desymmetrization Reactions to All-Carbon Quater-
nary Stereocenters. Chem. Rev. 2016, 116, 7330. (b) Heinrich, C. F.;
Peter, C.; Miesch, L.; Geoffroy, P.; Miesch, M. Diastereo- and
Enantioselective Synthesis of Polyfunctionalized Diquinanes, Hydrin-
danes, and Decalins Bearing A Hydroxyl Group at The Ring Junction.
(10)(a)Fukuyama, T.;Lin, S. C.;Li, L. FacileReductionofEthylThiol
Esters to Aldehydes: Application to A Total Synthesis of (+)-Neo-
thramycin A Methyl Ether. J. Am. Chem. Soc. 1990, 112, 7050.
(b) Fukuyama, T.; Tokuyama, H. Palladium-Mediated Synthesis of
Aldehydes and Ketones from Thiol Ethers. Aldrichimica Acta 2004, 37,
D
Org. Lett. XXXX, XXX, XXX−XXX