Scheme 1. Synthesis of the Dyes
of organic donor-acceptor compounds (Figure 1) that
low-energy absorption is predominantly charge transfer in
nature, and the same is true with the low-lying excited state
also.12 This will ensure and enhance the possibility of charge
separation and migration in such systems.
contain diphenylamine donors and cyano acrylic acid ac-
ceptors bridged by a benzothiadiazole or benzoselenadiazole
fragment. The carboxylic acid group is introduced so that it
will function as an anchoring group toward nanocrystalline
TiO2 in the solar cell setup. We believe that the low-band-
gap chromophores will function as a photon sink where
charge separation occurs, and their migration in opposite
directions is facilitated by the presence of donor and acceptor
units. In benzo(thia/selena)diazole-based fluorophores, the
The dyes were obtained in moderate yields in three steps
as illustrated in Scheme 1. In the first step, the donor is
(10) (a) Yang, R.; Tian, R.; Yan, J.; Zhang, Y.; Yang, J.; Hou, Q.; Yang,
W.; Zhang, C.; Cao, Y. Macromolecules 2005, 38, 244. (b) Zhang, F. L.;
Gadisa, A.; Inganas, O.; Svensson, M.; Andersson, M. R. Appl. Phys. Lett.
2004, 84, 3906. (c) Zhou, Q. M.; Hou, Q.; Zheng, L. P.; Deng, X. Y.; Yu,
G.; Cao, Y. Appl. Phys. Lett. 2004, 84, 1653. (d) Yohannes, T.; Zhang, F.;
Svensson, A.; Hummelen, J. C.; Andersson, M. R.; Inganas, O. Thin Solid
Films 2004, 449, 152.
(11) (a) Muhlbacher, D.; Neugebauer, H.; Cravino, A.; Sariciftci, N. S.;
van Duren, J. K. J.; Dhanabalan, A.; van Hal, P. A.; Janssen, R. A. J.;
Hummelen, J. C. Mol. Cryst. Liq. Cryst. 2002, 385, 205. (b) Brabec, C. J.;
Winder, C.; Sariciftci, N. S.; Hummelen, J. C.; Dhanabalan, A.; van Hal,
P. A.; Janssen, R. A. J. AdV. Funct. Mater. 2002, 12, 709. (c) Winder, C.;
Matt, G.; Hummelen, J. C.; Janssen, R. A. J.; Sariciftci, N. S.; Brabec, C.
J. Thin Solid Films 2002, 403, 373. (d) Dhanabalan, A.; van Duren, J. K.
J.; van Hal, P. A.; van Dongen, J. L. J.; Janssen, R. A. J. AdV. Funct. Mater.
2001, 11, 255. (e) van Duren, J. K. J.; Dhanabalan, A.; van Hal, P. A.;
Janssen, R. A. J. Synth. Metals 2001, 121, 1587.
(6) (a) Gra¨tzel, M. Nature 2001, 414, 338. (b) Bach, U.; Lupo, D.; Comte,
P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gra¨tzel, M. Nature
1998, 395, 583. (c) O’Regan, B.; Gra¨tzel, M. Nature 1991, 353, 737.
(d) Hagfeldt, A.; Gra¨tzel, M. Acc. Chem. Res. 2000, 33, 269.
(7) (a) Hara, K.; Sayama, K.; Ohga, Y.; Shinpo, A.; Suga, S.; Arakawa,
H. Chem. Commun. 2001, 569. (b) Hara, K.; Kurashige, M.; Dan-oh, Y.;
Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. New. J. Chem.
2003, 27, 783.
(8) (a) Horiuchi, T.; Miura, H.; Uchida, S. Chem. Commun. 2003, 3036.
(b) Horiuchi, T.; Miura, H.; Uchida, S. J. Photochem. Photobiol. A Chem.
2004, 164, 29.
(9) (a) Ehret, A.; Stuhl, L.; Spitler, M. T. J. Phys. Chem. B 2001, 105,
9960. (b) Yao, Q.-H.; Meng, F.-S.; Li, F.-Y.; Tian, H.; Huang, C.-H. J.
Mater. Chem. 2003, 13, 1048. (c) Wang, Z.-S.; Li, F.-Y.; Huang, C.-H.
Chem. Commun. 2000, 2063.
(12) (a) Yang, J.; Jiang, C.; Zhang, Y.; Yang, R.; Yang, W.; Hou, Q.;
Cao, Y. Macromolecules 2004, 37, 1211. (b) Huang, J.; Niu, Y.; Yang,
W.; Mo, Y.; Yuan, M.; Cao, Y. Macromolecules 2002, 35, 6080.
1900
Org. Lett., Vol. 7, No. 10, 2005