A R T I C L E S
Hong et al.
differ with respect to the orientation of the molecular dipole
moments.14-16
the paracyclophane core have also been designed to probe
intramolecular charge transfer (ICT) across the transannular
gap30 and thus the properties of donor/acceptor groups separated
through space.31 Multiple substitution on the 4,7,12,15-sites32
provides for nonlinear chromophores with a strong octupolar
component.33,34 It is also possible to incorporate [2.2]paracy-
clophane structures within the backbone of polymers to yield
structures with both π- and through-space- conjugation.35
The unique structure and optical properties of paracyclophane
molecules with prebuilt interchromophore delocalization sug-
gested that this molecular platform could be useful for designing
water-soluble optical reporters with decreased sensitivity to
optical perturbations brought about by aggregation phenomena.36
For example, the water-soluble compound octa(tetrabutyl-
ammonium) 4,7,12,15-tetrakis(3′,5′-bis(butoxysulfonate))styryl-
[2.2]paracyclophane (pCp-O-, shown in Scheme 1) shows
decreased perturbation with the addition of surfactant, relative
to linear anionic polymers and oligomers with phenylenevi-
nylene repeat units.37 This decreased sensitivity to changes by
the environment was attributed to a reduced tendency for
Ambiguities in the local structure within bulk materials and
the importance of correlating geometry with optical properties
for gauging the theoretical description of dipole-dipole coupling
and/or electron exchange17 has prompted efforts toward control-
ling the assembly of chromophores by techniques such as
Langmuir-Blodgett monolayer deposition,18 solvent-dependent
dimerization,19 DNA-assisted spatial control,20 and incorporation
into functionalized phospholipids,21 among others.22 Another
approach involves the synthesis of molecules that constitute
precisely defined chromophore pairs. Characterization of these
molecules and comparison against the monomeric building
blocks yield information on pairwise electronic communication,
which may be extrapolated to larger multichromophoric systems.
One example involves molecules with the general structure
naphthalene-bridge-naphthalene, where the pairs of naphtha-
lene chromophores are set in place by a rigid linker of variable
length.23
In connection with the synthesis and spectroscopy of well-
defined chromophore pairs with “though-space” delocalization,24
a number of molecules that contain the [2.2]paracyclophane
core25 have been reported. The parent core may be viewed as a
pair of strongly interacting benzene rings and displays spec-
troscopic features that have been described as analogous to those
of a benzene excimer.26 Synthetic elaboration allows examina-
tion of more complex chromophores and how molecular
composition influences the transannular delocalization.27 Some
of these structures are designed to mimic interchain delocal-
ization in conjugated polymers, such as poly(phenylenevin-
ylene),28,29 and are used to give insight into how the orientation,
conjugation length, and contact site determine the lowest energy
state for the pair of chromophores. Chromophores containing
(27) Chromophores studied in this manner include the following. (a) Phenan-
threnophane: Schweitzer, D.; Hausser, K. H.; Haenel, M. W. Chem. Phys.
1978, 29, 181. (b) Anthracenophane: Ishikawa, S.; Nakamura, J.; Iwata,
S.; Sumitani, M.; Nagakura, S.; Sakata, Y.; Misumi, S. Bull. Chem. Soc.
Jpn. 1979, 52, 1346. (c) Fluorenophane: Haenel, M. W. Tetrahedron Lett.
1976, 17, 3121. (d) Colpa, J. P.; Hausser K. H.; Schweitzer, D. Chem.
Phys. 1978, 29, 187. (e) Pyrenophane and several isomers of naphthale-
nophane: Haenel, M.; Staab, H. A. Chem. Ber. 1973, 106, 2203. Otsubo,
T.; Mizogami, S.; Osaka, N.; Sakata, Y.; Misumi, S. Bull. Chem. Soc. Jpn.
1977, 50, 1858. (f) Stilbenophanes: Anger, I.; Sandros, K.; Sundahl, M.;
Wennerstro¨m, O. J. Phys. Chem. 1993, 97, 1920. Tsuge, A.; Nishimoto,
T.; Uchida, T.; Yasutake, M.; Moriguchi, T.; Sakata, K. J. Org. Chem.
1999, 64, 7246. Cinnamophanes: Greiving, H.; Hopf, H.; Jones, P. G.;
Bubenitschek, P.; Desvergne, J. P.; Bouas-Laurent H. J. Chem. Soc., Chem.
Commun. 1994, 9, 1075.
(28) (a) Bartholomew, G. P.; Bazan, G. C. Acc. Chem. Res. 2001, 34, 30. (b)
Oldham, W. J.; Miao, Y.-J.; Lachicotte, R. J.; Bazan, G. C. J. Am. Chem.
Soc. 1998, 120, 419. (c) Bazan, G. C.; Oldham, W. J.; Lachicotte, R. J.;
Tretiak, S.; Chernyak, V.; Mukamel, S. J. Am. Chem. Soc. 1998, 120, 9188.
(29) (a) Wang, S. J.; Bazan, G. C.; Tretiak, S.; Mukamel, S. J. Am. Chem. Soc.
2000, 112, 1289. (b) Verdal, N.; Godbout, J. T.; Perkins, T. L.; Bartho-
lomew, G. P.; Bazan, G. C.; Kelley, A. M. Chem. Phys. Lett. 2000, 320,
95.
(14) Siddiqui, S.; Spano, F. C. Chem. Phys. Lett. 1999, 308, 99.
(15) Chowdhury, A.; Wachsmann-Hogiu, S.; Bangal, P. R.; Raheem, I.; Peteanu,
L. A. J. Phys. Chem. B 2001, 105, 12196.
(16) Cornil, J.; dos Santos, D. A.; Crispin, X.; Silbey, R.; Bre´das, J.-L. J. Am.
Chem. Soc. 1998, 120, 1289.
(17) (a) Bre´das, J.-L.; Cornil, J.; Beljonne, D.; dos Santos, D. A.; Shuai, Z. G.
Acc. Chem. Res. 1999, 32, 267. (b) Tretiak, S.; Mukamel. S. Chem. ReV.
2002, 102, 3171. (c) Spano, F. C. J. Chem. Phys. 2003, 118, 981. (d) Iozzi,
M. F.; Mennucci, B.; Tomasi, J.; Cammi, R. J. Chem. Phys. 2004, 120,
7029. (e) Thompson, A. L.; Gaab, K. M.; Xu, J.; Bardeen, C. J.; Martinez,
T. J. J. Phys. Chem. A 2004, 108, 671.
(18) (a) Nakahara, H.; Fukuda, K.; Mo¨bius, D.; Kuhn, H. J. Phys. Chem. 1986,
90, 6144. (b) Evans, C. E.; Bohn, P. W. J. Am. Chem. Soc. 1993, 115,
3306. (c) Whitten, D. G. Acc. Chem. Res. 1993, 26, 502. (d) Huang, Y.;
Cheng, T.; Li, F.; Huang, C.-H.; Hou, T.; Yu, A.; Zhao, X.; Xu, X. J.
Phys. Chem. B 2002, 106, 10020.
(19) Wu¨rthner, F.; Yao, S.; Debaerdemaeker, T.; Wortmann, R. J. Am. Chem.
Soc. 2002, 124, 9431.
(20) (a) Letsinger, R. L.; Wu, T. J. Am. Chem. Soc. 1995, 117, 7323. (b) Lewis,
F. D.; Wu, T.; Burch, E. L.; Bassani, D. M.; Yang, J.-S.; Schneider, S.;
Ja¨ger, W.; Letsinger, R. L. J. Am. Chem. Soc. 1995, 117, 8785. (c) Lewis,
F. D.; Yang, J.-S.; Stern, C. L. J. Am. Chem. Soc. 1996, 118, 2772.
(21) Song, X.; Geiger, C.; Furman, I.; Whitten, D. G. J. Am. Chem. Soc. 1994,
116, 4103.
(22) Berberan-Santos, M. N.; Choppinet, P.; Fedorov, A.; Jullien, L.; Valeur,
B. J. Am. Chem. Soc. 1999, 121, 2526.
(23) Scholes, G. D.; Ghiggino, K. P.; Oliver, A. M.; Paddon-Row, M. N. J.
Am. Chem. Soc. 1993, 115, 4345.
(24) We define “through-space” interactions as perturbations in molecular
electronic structure caused by another chromophore via Dexter and/or
Fo¨rster mechanism(s). See: (a) Gilbert, A.; Baggott, J. Essentials of
Molecular Photochemistry; CRC Press: Boca Raton, FL, 1991. (b) Pope,
M.; Swenberg, C. E. Electronic Processes in Organic Crystals; Clarendon
Press: New York, 1982.
(25) (a) Vo¨gtle, F. Cyclophane Chemistry; J. Wiley & Sons: Chichester,
England, 1993. (b) Modern Cyclophane Chemistry; Gleiter, R., Hopf, H.,
Eds.; Wiley-VCH: Weinheim, Germany, 2004.
(30) Zyss, J.; Ledoux, I.; Volkov, S.; Chernyak, V.; Mukamel, S.; Bartholomew,
G. P.; Bazan, G. C. J. Am. Chem. Soc. 2000, 122, 11956.
(31) (a) Staab, H. A.; Rebafka, W. Chem. Ber. 1977, 110, 3333. (b) Staab, H.
A.; Haffner, H. Chem. Ber. 1977, 110, 3358. (c) Staab, H. A.; Starker, B.;
Krieger, C. Chem. Ber. 1983, 116, 3831. (d) Staab, H. A.; Schanne, L.;
Krieger, C.; Taglieber, V. Chem. Ber. 1985, 118, 1204. (e) Tashiro, M.;
Koya, K.; Yamato, T. J. Am. Chem. Soc. 1983, 105, 6650. (f) Machida,
H.; Tatemitsu, H.; Sakata, Y.; Misumi, S. Tetrahedron Lett. 1978, 19, 915.
(g) Review: Keehn, P. M. In Cyclophanes; Keehn, P. M., Rosenfeld, S.
M., Eds.; Academic Press: New York, 1983. (h) Review: Schwartz, M.
H. J. Inclus. Phenom. Mol. Rec. Chem. 1990, 9, 1.
(32) Sankararaman, S.; Hopf, H.; Dix, I.; Jones, P. G. Eur. J. Org. Chem. 2000,
15, 2699.
(33) (a) Bartholomew, G. P.; Bazan, G. C. J. Am. Chem. Soc. 2002, 124, 5183.
(b) Bartholomew, G. P.; Ledoux, I.; Mukamel, S.; Bazan, G. C.; Zyss, J.
J. Am. Chem. Soc. 2002, 124, 13480.
(34) (a) Wigner, E. P. Group Theory and its Application to the Quantum
Mechanics of Atomic Spectra; Academic Press: New York, 1959. (b) Zyss,
J. J. Chem. Phys. 1993, 98, 6583. (c) Zyss, J.; Ledoux, I. Chem. ReV. 1994,
94, 77. (d) Joffre, M.; Yaron, D.; Silbey, R. J.; Zyss, J. J. Chem. Phys.
1992, 97, 5607. (e) Cho, M.; An, S.-Y.; Lee, H.; Ledoux, I.; Zyss, J. J.
Chem. Phys. 2002, 116, 9165.
(35) (a) Morisaki, Y.; Chujo, Y. Macromolecules 2002, 35, 587. (b) Morisaki,
Y.; Chujo, Y. Chem. Lett. 2002, 31, 194. (c) Morisaki, Y.; Ishida, T.; Chujo,
Y. Macromolecules 2002, 35, 7872. (d) Morisaki, Y.; Ishida, T.; Chujo,
Y. Polym. J. 2003, 35, 501. (e) Morisaki, Y.; Fujimura, F.; Chujo, Y.
Organometallics 2003, 22, 3553. (f) Morisaki, Y.; Chujo, Y. Macromol-
ecules 2004, 37, 4099. (g) Morisaki, Y.; Chujo, Y. Macromolecules 2003,
36, 9319. (h) Salhi, F.; Collard, D. M. AdV. Mater. 2003, 15, 81. (i) Guyard,
L.; An, M. N. D.; Audebert, P. AdV. Mater. 2001, 13, 133. (j) Kaikawa,
T.; Takimiya, K.; Aso, Y.; Otsubo, T. Org. Lett. 2000, 2, 4197. (k) Wang,
W.; Xu, J.; Lai, Y.-H. Org. Lett. 2003, 5, 2765.
(36) Chen, L.; McBranch, D. W.; Wang, H.-L.; Helgeson, R.; Wudl, F.; Whitten,
D. G. Proc. Natl. Acad. Sci. 1999, 96, 12287.
(37) (a) Hong, J. W.; Gaylord, B. S.; Bazan, G. C. J. Am. Chem. Soc. 2002,
124, 11868. (b) Hong, J. W.; Benmansour, H.; Bazan, G. C. Chem. Eur. J.
2003, 9, 3186.
(26) (a) Birks, J. B. Photophysics of Aromatic Molecules; Wiley-Interscience:
London, U.K., 1970. (b) Canuto, S.; Zerner, M. C. J. Am. Chem. Soc. 1990,
112, 2114. (c) Iwata, S.; Fuke, K.; Sasaki, M.; Nagakura, S.; Otsubo, T.;
Misumi, S. J. Mol. Spectrosc. 1973, 46, 1.
9
7436 J. AM. CHEM. SOC. VOL. 127, NO. 20, 2005