FULL PAPER
(100 MHz, C6D6): δ = 23.60 (CH3), 28.53 (CH), 118.75, 119.36,
123.56, 125.87, 126.60, 132.21, 136.46, 139.08, 147.00, 159.88
(ArC), 167.58 (CH=N) ppm. HRMS (ESI): calcd. for C38H44N2O2
[M + H]+ 561.3476; found 561.3441. C38H44N2O2 (560.78): calcd.
C 81.39, H 7.91, N 5.00; found C 81.23, H 7.99, N 4.92.
C38H42B2F4N2O2 [M
C38H42B2F4N2O2 (656.37): calcd. C 69.54, H 6.45, N 4.27; found
C 69.83, H 6.31, N 4.11.
+
Na]+ 679.3273; found 679.3211.
Supporting Information (see footnote on the first page of this arti-
cle): Synthesis of 4, additional experimental and analytical details.
Complex 1: Under nitrogen, H2L1 (0.40 g, 1.02 mmol) was added
to a suspension of NaH (0.056 g, 2.34 mmol) in anhydrous tetra-
hydrofuran (15 mL) at 0 °C with stirring. The reaction mixture was
warmed to room temperature and stirred at that temperature for
2 h. The resulting solution was added to a solution of BF3·Et2O
(2.51 mL, 20.40 mmol) in tetrahydrofuran, and the mixture was
stirred for 24 h. The reaction mixture was filtered through Celite,
and the resulting filtrate was concentrated to yield a pale yellow
solid, which was purified by recrystallization in acetonitrile, yield
260 mg, 52%, m.p. 297–303 °C (dec). 1H NMR (400 MHz, CDCl3):
δ = 7.17 (t, J = 4 Hz, 2 H, ArH), 7.47–7.58 (m, 12 H, ArH), 8.05
(d, J = 8 Hz, 2 H, ArH), 8.49 (s, 2 H, CH=N) ppm. 13C NMR
(100 MHz, CDCl3): δ = 116.61, 120.40, 123.78, 126.15, 129.49,
129.84, 132.43, 142.01, 142.56, 157.65 (ArC), 163.84 (CH=N) ppm.
19F NMR (376 MHz, CDCl3): δ = –135.44 (br) ppm. 11B NMR
(128 MHz, CDCl3): δ = 1.01 (s) ppm. Quantum yield (Φ) = 0.12.
Acknowledgments
K. V. thanks the Department of Science and Technology (DST),
New Delhi for a Ramanujan fellowship (SR/S2/RJN-49/2011) and
the National Institute of Science Education and Research (NISER)
for financial support. K. D., V. M. and M. R. thank the Council of
Scientific and Industrial Research (CSIR), New Delhi for research
fellowships. The authors also thank the reviewers for their helpful
suggestions.
[1] C. D. Entwistle, T. B. Marder, Chem. Mater. 2004, 16, 4574.
[2] J. D. Hoefelmeyer, M. Schulte, M. Tschinkl, F. P. Gabbai, Co-
ord. Chem. Rev. 2002, 235, 93.
[3] C. R. Wade, A. E. J. Broomsgrove, S. Aldridge, F. P. Gabbai,
Chem. Rev. 2010, 110, 3958.
[4] S. Yamaguchi, A. Wakamiya, Pure Appl. Chem. 2006, 78, 1413.
[5] F. Jaekle, Coord. Chem. Rev. 2006, 250, 1107.
[6] N. Matsumi, Y. Chujo, Polym. J. 2008, 40, 77.
[7] A. Lorbach, A. Hubner, M. Wagner, Dalton Trans. 2012, 41,
6048.
[8] H. Braunschweig, A. Damme, J. O. C. Jimenez-Halla, C.
Hoarl, I. Krummenacher, T. Kupfer, L. Mailaender, K. Rad-
acki, J. Am. Chem. Soc. 2012, 134, 20169.
[9] L. Weber, J. Halama, V. Werner, K. Hanke, L. Böhling, A.
Chrostowska, A. Dargelos, M. Maciejczyk, A.-L. Raza, H.-G.
Stammler, B. Neumann, Eur. J. Inorg. Chem. 2010, 5416.
[10] A. L. Korich, P. M. Iovine, Dalton Trans. 2010, 39, 1423.
[11] K. Parab, K. Venkatasubbaiah, F. Jaekle, J. Am. Chem. Soc.
2006, 128, 12879.
IR (KBr): ν = 3030 (w), 2944 (m), 2872 (s), 1622 (s), 1589 (m),
˜
1567 (m), 1454 (s), 1391 (m), 1335 (m), 1255 (s), 1201 (s), 1126 (m),
1048 (s) cm–1. HRMS (ESI): calcd. for C26H18B2F4N2O2
[M + Na]+ 511.1392; found 511.1321. C26H18B2F4N2O2 (488.05):
calcd. C 63.99, H 3.72, N 5.74; found C 64.27, H 3.79, N 5.63.
Complex 2: Compound 2 was prepared by following a similar pro-
cedure to that used for 1. The reaction of imine (0.20 g, 0.44 mmol),
NaH (0.026 g, 1.11 mmol), and BF3·Et2O (2.7 mL, 22.30 mmol) in
anhydrous tetrahydrofuran gave the product as a white solid, which
was purified by recrystallization, yield 0.183 g, 75%, m.p. Ͼ310 °C
(stable to 310 °C). 1H NMR (400 MHz, CDCl3): δ = 2.31 (s, 12 H,
CH3), 7.15–7.22 (m, 8 H, ArH), 7.50 (d, J = 8 Hz, 2 H, ArH), 8.14
(d, J = 8 Hz, 2 H, ArH), 8.26 (s, 2 H, CH=N) ppm. 13C NMR
(100 MHz, CDCl3): δ = 18.30 (CH3), 116.54, 120.35, 126.20,
128.74, 128.92, 132.18, 133.56, 141.15, 142.16, 157.67 (ArC),
167.65 (CH=N) ppm. 19F NMR (376 MHz, CDCl3): δ = –137.15
(br) ppm. 11B NMR (128 MHz, CDCl3): δ = 0.89 (s) ppm. Quan-
[12] Y.-L. Rao, H. Amarne, S. Wang, Coord. Chem. Rev. 2012, 256,
759.
[13] K. Tanaka, Y. Chujo, Macromol. Rapid Commun. 2012, 33,
1235.
[14] J. F. Araneda, W. E. Piers, B. Heyne, M. Parvez, R. McDonald,
Angew. Chem. 2011, 123, 12422; Angew. Chem. Int. Ed. 2011,
50, 12214–12217.
tum yield (Φ) = 0.28. IR (KBr): ν = 3032 (w), 2965 (m), 2870 (m),
˜
1626 (s), 1581 (m), 1567 (s), 1436 (s), 1385 (s), 1316 (s), 1245 (s),
[15] D. Frath, S. Azizi, G. Ulrich, R. Ziessel, Org. Lett. 2012, 14,
1218 (s), 1188 (s), 1048 (m) cm–1. HRMS (ESI): calcd. for
4774.
Na]+ 567.2019; found 567.2064.
[16] J. Massue, D. Frath, G. Ulrich, P. Retailleau, R. Ziessel, Org.
Lett. 2012, 14, 230.
[17] Z. Zhang, H. Bi, Y. Zhang, D. Yao, H. Gao, Y. Fan, H. Zhang,
Y. Wang, Y. Wang, Z. Chen, D. Ma, Inorg. Chem. 2009, 48,
7230.
C30H26B2F4N2O2 [M
+
C30H26B2F4N2O2 (544.16): calcd. C 66.22, H 4.82, N 5.15; found
C 65.94, H 4.42, N 5.38.
Complex 3: Compound 3 was prepared by following a similar pro-
cedure to that used for 1. The reaction of imine (1.00 g, 1.78 mmol),
NaH (0.107 g, 4.46 mmol), and BF3·Et2O (11 mL, 89.16 mmol) in
anhydrous tetrahydrofuran (30 mL) gave the product as a white
solid, which was purified by recrystallization, yield 1.05 g, 90%,
m.p. Ͼ310 °C (stable to 310 °C). 1H NMR (400 MHz, CDCl3): δ
= 1.15 (d, J = 8 Hz,12 H, CH3), 1.29 (d, J = 8 Hz, 12 H, CH3),
3.03–3.1 (m, 4 H, CH), 7.18 (t, J = 8 Hz, 2 H, ArH), 7.26–7.28 (m,
[18] Q. Hou, L. Zhao, H. Zhang, Y. Wang, S. Jiang, J. Lumin. 2007,
126, 447.
[19] D. Li, Z. Zhang, S. Zhao, Y. Wang, H. Zhang, Dalton Trans.
2011, 40, 1279.
[20] H. Zhang, C. Huo, K. Ye, P. Zhang, W. Tian, Y. Wang, Inorg.
Chem. 2006, 45, 2788.
[21] F. P. Macedo, C. Gwengo, S. V. Lindeman, M. D. Smith, J. R.
Gardinier, Eur. J. Inorg. Chem. 2008, 3200.
4 H, ArH), 7.40 (t, J = 8 Hz, 2 H, ArH), 7.48 (d, J = 8 Hz, 2 H, [22] B. J. Liddle, R. M. Silva, T. J. Morin, F. P. Macedo, R. Shukla,
S. V. Lindeman, J. R. Gardinier, J. Org. Chem. 2007, 72, 5637.
[23] Y. Ren, X. Liu, W. Gao, H. Xia, L. Ye, Y. Mu, Eur. J. Inorg.
Chem. 2007, 1808.
[24] M. Rodriguez, J. L. Maldonado, G. Ramos-Ortiz, O. Doming-
uez, M. E. Ochoa, R. Santillan, N. Farfan, M.-A. Meneses-
Nava, O. Barbosa-Garcia, Polyhedron 2012, 43, 194.
[25] Q. D. Liu, M. S. Mudadu, R. Thummel, Y. Tao, S. Wang, Adv.
Funct. Mater. 2005, 15, 143.
ArH), 8.15 (d, J = 8 Hz, 2 H, ArH), 8.24 (s, 2 H, CH=N) ppm.
13C NMR (100 MHz, CDCl3): δ = 23.37 (CH3), 25.61 (CH3), 28.60
(CH), 116.35, 120.44, 124.48, 126.17, 129.48, 132.22, 137.87,
142.31, 144.21, 157.63 (ArC), 167.02 (CH=N) ppm. 19F NMR
(376 MHz, CDCl3): δ = –137.94 (br) ppm. 11B NMR (128 MHz,
CDCl ): δ = 0.80 (s) ppm. Quantum yield (Φ) = 0.16. IR (KBr): ν
˜
3
= 3065 (w), 2975 (s), 2872 (m), 1626 (s), 1592 (w), 1568 (s), 1465
(m), 1439 (s), 1386 (s), 1311 (s), 1254 (s), 1238 (s), 1183 (s), 1151
(m), 1111 (m), 1057 (m) cm–1. HRMS (ESI): calcd. for
[26] S. L. Hellstrom, J. Ugolotti, G. J. P. Britovsek, T. S. Jones,
A. J. P. White, New J. Chem. 2008, 32, 1379.
Eur. J. Inorg. Chem. 2014, 539–545
544
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim