4018
O. Miyata et al. / Tetrahedron Letters 46 (2005) 4015–4018
4. According to the reported procedure, the hydroxi-
mates
9. (a) Sugiyama, S.; Arai, S.; Ishii, K. Tetrahedron: Asym-
5
were prepared from the (S)-b-(aminooxy)-
metry 2004, 15, 3149–3153; (b) Boruwa, J.; Borah, J. C.;
Kalita, B.; Barua, N. C. Tetrahedron Lett. 2004, 45, 7355–
7358; (c) Matsunaga, S.; Yoshida, T.; Morimoto, H.;
Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126,
8777–8785; (d) Davies, S. G.; Hughes, D. G.; Nicholson,
R. L.; Smith, A. D.; Wright, A. J. Org. Biomol. Chem.
2004, 2, 1549–1553; (e) Milicevic, S.; Matovic, R.; Saicic,
R. N. Tetrahedron Lett. 2004, 45, 955–957; (f) Ravi, K. A.;
Bhaskar, G.; Madhan, A.; Venkateswara, R. B. Synth.
Commun. 2003, 33, 2907–2916; (g) Cater, P. H.; Laporte,
J. R.; Scherie, P. A.; Decicco, C. P. Bioorg. Med. Chem.
Lett. 2003, 13, 1237–1239; (h) Hamersak, Z.; Sepac, D.;
Ziher, D.; Sunjic, V. Synthesis 2003, 375–382; (i) Carda,
M.; Gonzalez, F.; Sanchez, R.; Marco, J. A. Tetrahedron:
Asymmetry 2002, 13, 1005–1010; (j) Hamersak, Z.;
Ljubovic, E.; Mercep, M.; Mesic, M.; Sunjic, V. Synthesis
2001, 1989–1992; (k) Madhan, A.; Kumar, A. R.; Rao, B.
V. Tetrahedron: Asymmetry 2001, 12, 2009–2011; (l) Park,
J. N.; Ko, S. Y.; Koh, H. Y. Tetrahedron Lett. 2000, 41,
5553–5556; (m) Seki, M.; Mori, K. Eur. J. Org. Chem.
1999, 2965–2967; (n) Sakamoto, Y.; Shiraishi, A.; Seon-
hee, J.; Nakata, T. Tetrahedron Lett. 1999, 40, 4203–
4206.
benzeneethanol5 via acylation with corresponding acid
chloride and subsequent allylation with allyl tosylate.
Miyata, O.; Nishiguchi, A.; Ninomiya, I.; Aoe, K.;
Okamura, K.; Naito, T. J. Org. Chem. 2000, 65, 6922–
6931.
5. KibayashiÕs group has reported the diastereoselective
nucleophilic addition of alkyl lithium to chiral oxime
ethers having (S)-(2-hydroxy-1-phenyl)ethyl group. Atobe,
M.; Yamazaki, N.; Kibayashi, C. J. Org. Chem. 2004, 69,
5595–5607.
6. (a) Bloch, R. Chem. Rev. 1998, 98, 1407–1738; (b) Alvaro,
G.; Savoia, D. Synlett 2002, 651–673.
7. The absolute configuration of (R)-7b was established by its
chemical conversion into the known (+)-cytoxazone 4.
Therefore, the diastereomer 6b has (S)-configuration. The
absolute configurations of 6a,c, 9 and 7a,c, 10 were
deduced from comparison of the 1H NMR spectra with
those of 6b and 7b. Configurations of oxime ethers in 6a–c,
7a–c, 9, and 10 were deduced as follows. It is established
that the imino 1,2-Wittig rearrangement of Z-hydroxi-
mates gave stereoselectively Z-a-hydroxy oxime ethers
with complete retention of the configuration.2a,d Since the
oxime ethers 6a–c, 7a–c, 9, and 10 were derived from Z-
hydroximates 5a–c and 8, 6a–c, 7a–c, 9, and 10 are
deduced to be Z-oxime ethers.
10. (+)-Cytoxazone 4: 1H NMR (DMSO-d6, 500 MHz) d: 8.00
(1H, br s), 7.11 (2H, br d, J = 9 Hz), 6.89 (2H, br d,
J = 9 Hz), 4.87 (1H, d, J = 8.5Hz), 4.76 (1H, t, J = 5Hz),
4.66 (1H, br td, J = 8.5, 5 Hz), 3.71 (3H, s), 2.93 (2H, m).
13C NMR (DMSO-d6, 125MHz) d: 159.0, 158.7, 129.3,
128.0, 113.7, 80.0, 61.0, 56.2, 55.1. HRMS m/z: Calcd for
8. (a) Kakeya, H.; Morishita, M.; Kobinata, K.; Osono, M.;
Ishizuka, M.; Osada, H. J. Antibiot. 1998, 51, 1126–1128;
(b) Kakeya, H.; Morishita, M.; Koshino, H.; Morita, T.;
Kobayashi, K.; Osada, H. J. Org. Chem. 1999, 64, 1052–
1053.
30
C11H13NO4 (M+) 223.0844. Found: 223.0846. ½aꢁD +74.4
29
(c 0.86, MeOH). [lit.2d ½aꢁD +75.0 (c 0.51, MeOH)].