(2S,3S,5Z,10S,11R)-11,12-Bis(tert-butyldimethylsilyloxy)-3-
(2-methoxyethoxymethoxy)-10-methyldodec-5-en-2-ol,
C29H62O6Si2, OH-54
water. The combined organic layers were dried over MgSO4 and
concentrated under vacuum. The crude product was purified
by column chromatography (silica gel, hexanes–ethyl acetate,
4 : 1), to provide the required C7–C21 subunit of epothilone 3 in
0.2 g (70% overall yield for the two steps). dH(300 MHz; CDCl3;
Me4Si) 9.58 (1 H, d, J 2.0), 6.94 (1 H, s), 6.47 (1 H, s), 5.39–5.43
(2 H, m), 4.71 (1 H, d, J 6.8), 4.63 (1 H, d, J 6.9), 4.12 (1 H, t, J
6.8), 3.78–3.85 (1 H, m), 3.51–3.63 (3 H, m), 3.37 (3 H, m), 2.69
(3 H, s), 2.27–2.42 (3 H, m), 1.97–2.07 (5 H, m), 1.33–1.41 (4
H, m), 1.06 (3 H, d, J 7.0); dC(75.5 MHz; CDCl3; Me4Si) 205.1,
164.6, 152.8, 138.3, 131.1, 126.0, 121.5, 116.0, 92.8, 81.6, 71.8,
67.1, 59.1, 46.2, 32.0, 30.1, 27.4, 26.9, 19.3, 13.8, 13.3; EI-MS:
Procedure similar to that for OH-TBS-23h, providing OH-54
in 95% yield. dH(300 MHz; CDCl3; Me4Si) 5.35–5.51 (2 H, m),
4.79 (2 H, s), 3.67–3.82 (3 H, m), 3.52–3.60 (3 H, m), 3.44–3.46
(2 H, m), 3.37 (3 H, s), 3.35–3.36 (1 H, m), 2.95–2.97 (1 H,
br s), 2.18–2.38 (2 H, m), 1.98–2.05 (2 H, m), 1.58–1.66 (1 H,
m), 1.16–1.41 (4 H, m), 1.14 (3 H, d, J 6.4), 0.87 (9 H, s), 0.86
(9 H, s), 0.79 (3 H, d, J 6.8), 0.03 (3 H, s), 0.02 (3 H, s), 0.01
(6 H, s); dC(75.5 MHz; CDCl3; Me4Si) 132.4, 124.5, 95.8, 84.0,
75.8, 71.7, 68.9, 67.6, 59.0, 35.2, 33.4, 29.1, 27.7, 27.6, 26.0, 25.9,
19.1, 18.3, 18.2, 13.3, −4.0, −4.8, −5.3, −5.4; ESI: m/z 585 [Na
adduct]; HRMS-ESI: (Na adduct) 585.3981 (actual), 585.3983
(calcd).
+
m/z 256, 89 [100%, CH3OCH2CH2OCH2 ]; CI-MS: m/z 396
[(M + H)+], 290 [100%, M + H − HOCH2OCH2CH2OCH3],
256, 168, 89; HRMS-CI: (M + H) 396.2205 (actual), 396.2209
(calcd).
(3S,5Z,10S,11R)-11,12-Bis(tert-butyldimethylsilyloxy)-3-(2-
methoxyethoxymethoxy)-10-methyldodec-5-en-2-one,
C29H60O6Si2, 4
Acknowledgements
This paper is dedicated to the memory of Professor Ian P. Roth-
well. Financial assistance from the Herbert C. Brown Center
for Borane Research28 and the Aldrich Chemical Company are
gratefully acknowledged.
Procedure similar to that for keto-10, providing the pure
aldehyde 4 in 98% yield. dH(300 MHz; CDCl3; Me4Si) 5.48–
5.56 (1 H, m), 5.32–5.40 (2 H, m), 4.77 (1 H, d, J 7.1), 4.73 (1
H, d, J 7.1), 4.09 (1 H, t, J 6.2), 3.45–3.73 (6 H, m), 3.37 (3
H, s), 2.45 (2 H, t, J 6.6), 2.17 (3 H, s), 1.99–2.05 (2 H, m),
1.61–1.64 (1 H, m), 1.12–1.42 (4 H, m), 0.88 (9 H, s), 0.87 (9
H, s), 0.80 (3 H, d, J 6.8), 0.07 (3 H, s), 0.04 (6 H, s), 0.03
(3 H, s); dC(75.5 MHz; CDCl3; Me4Si) 209.2, 133.3, 123.2, 95.2,
82.1, 75.8, 71.7, 67.5, 65.3, 59.0, 35.2, 33.4, 29.9, 27.6, 27.5, 26.5,
26.0, 25.9, 18.3, 18.2, 13.3, −4.0, −4.8, −5.3, −5.4; EI-MS: m/z
References and notes
1 D. M. Bollag, P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J.
Liesch, M. Goetz, E. Lazarides and C. M. Woods, Cancer Res.,
1995, 55, 2325.
2 For reviews on epothilones, see: (a) R. Altaha, T. Fojo, E. Reed and
J. Abraham, Curr. Pharm. Des., 2002, 8, 1707; (b) S. J. Stachel, K.
Biswas and S. J. Danishefsky, Curr.. Pharm. Des., 2001, 7, 1277; (c) J.
Mulzer, Monatsh. Chem., 2000, 131, 205; (d) K. C. Nicolaou, F.
Roschanger and D. Vourloumis, Angew. Chem., Intl. Ed., 1998, 37,
2015; (e) M. R. V. Finlay, Chem. Ind., 1997, 991; (f) L. Wessjohann,
Angew. Chem., Intl. Ed. Engl., 1997, 36, 715, and references therein.
For total syntheses, see:; (g) A. Balog, D. F. Meng, T. Kamenecka, P.
Bertinato, D. S. Su, E. J. Sorensen and S. J. Danishefsky, Angew.
Chem., Int. Ed. Engl., 1996, 35, 2801; (h) K. C. Nicolaou, N.
Winssinger, J. Pastor, S. Ninkovic, F. Sarabia, Y. He, D. Vourloumis,
Z. Yang, T. Li, P. Giannakakou and E. Hamel, Nature, 1997, 387, 268;
(i) D. Schinzer, A. Limberg, A. Bauer, O. M. Bohm and M. Cordes,
Angew. Chem., Intl. Ed. Engl., 1997, 36, 523; (j) K. C. Nicolaou,
Y. He, D. Vourloumis, H. Vallberg, F. Roschangar, F. Sarabia, S.
Ninkovic, Z. Yang and J. I. Trujillo, J. Am. Chem. Soc., 1997, 119,
7960; (k) K. C. Nicolaou, S. Ninkovic, F. Sarabia, D. Vourloumis, Y.
He, H. Vallberg, M. R. V. Finlay and Z. Yang, J. Am. Chem. Soc.,
1997, 119, 7974; (l) D. F. Meng, P. Bertinato, A. Balog, D. S. Su, T.
Kamenecka, E. J. Sorensen and S. J. Danishefsky, J. Am. Chem. Soc.,
1997, 119, 10073; (m) S. A. May and P. A. Grieco, Chem. Commun.,
1998, 1597; (n) D. Schinzer, A. Bauer, O. M. Bohm, A. Limberg and
M. Cordes, Chem. Eur. J., 1999, 5, 2483; (o) J. Mulzer, G. Karig and
P. Pojarliev, Tetrahedron Lett., 2000, 41, 7635; (p) B. Zhu and J. S.
Panek, Org. Lett., 2000, 2, 2575; (q) D. Sawada, M. Kanai and M.
Shibasaki, J. Am. Chem. Soc., 2000, 122, 10521; (r) A. Furstner, C.
Mathes and C. W. Lehmann, Chem. Eur. J., 2001, 7, 5299; (s) M.
Valluri, R. M. Hindupur, P. Bijoy, G. Labadie, J. C. Jung and M. A.
Avery, Org. Lett., 2001, 3, 3607; (t) R. M. Hindupur, B. Panicker, M.
Valluri and M. A. Avery, Tetrahedron Lett., 2001, 42, 7341; (u) J. W.
Bode and E. M. Carreira, J. Am. Chem. Soc., 2001, 123, 3611; (v) Z. Y.
Liu, Z. C. Chen, C. Z. Yu, R. F. Wang, R. Z. Zhang, C. S. Huang, Z.
Yan, D. R. Cao, J. B. Sun and G. Li, Chem. Eur. J., 2002, 8, 3747.
3 For recent analog syntheses, see: (a) D. Schinzer, E. Bourguet and S.
Ducki, Chem. Eur. J., 2004, 10, 3217; (b) D. Schinzer, O. M. Bohm,
K. H. Altmann and M. Wartmann, Synlett, 2004, 375; (c) G. Koch, O.
Loiseleur and K. H. Altmann, Synlett, 2004, 693; (d) S. D. Dong, K.
Sundermann, K. M. J. Smith, J. Petryka, F. H. Liu and D. C. Myles,
Tetrahedron Lett., 2004, 45, 1945; (e) T. Ganesh, J. K. Schilling,
R. K. Palakodety, R. Ravindra, N. Shanker, S. Bane and D. G. I.
Kingston, Tetrahedron, 2003, 59, 9979; (f) D. Quintard, P. Bertrand,
S. Vielle, E. Raimbaud, P. Renard, B. Pfeiffer and J. P. Gesson, Synlett,
2003, 2033; (g) T. C. Chou, H. J. Dong, A. Rivkin, F. Yoshimura,
A. E. Gabarda, Y. S. Cho, W. P. Tong and S. J. Danishefsky, Angew.
Chem., Int. Ed., 2003, 42, 4761; (h) K. C. Nicolaou, P. K. Sasmal,
G. Rassias, M. V. Reddy, K. H. Altmann, M. Wartmann, A. O’Brate
and P. Giannakakou, Angew. Chem., Int. Ed., 2003, 42, 3515; (i) C. N.
Boddy, T. L. Schneider, K. Hotta, C. T. Walsh and C. Khosla, J. Am.
+
427, 147, 133, 89 [100%, CH2OCH2CH2OCH3 ], 73, 59; CI-MS:
m/z 561 [(M + H)+], 485 [(M + H − HOCH2CH2OCH3)+],
353 [(M + H − HOCH2CH2OCH3 − HOSi(CH3)2C(CH3)3)+],
+
221, 89 [100%, CH2OCH2CH2OCH3 ]; HRMS-CI: (M + H)
561.4008 (actual), 561.4007 (calcd).
4-(((1E,3S,5Z,10S,11R)-11,12-Bis(tert-butyldimethylsilyloxy)-
3-(2-methoxyethoxymethoxy)-2,10-dimethyldodeca-1,5-dienyl)-
2-methylthiazole, C34H65O5SNSi2, 55
Procedure similar to that for 39, providing the coupled olefin 55
in 83% yield. dH(300 MHz; CDCl3; Me4Si) 6.92 (1 H, s), 6.48
(1 H, s), 5.40 (2 H, ddd, J 6.9, 12.2 and 18.7), 4.71 (1 H, d. J
6.9), 4.63 (1 H, d, J 6.9), 4.12 (1 H, t, J 6.8), 3.78–3.86 (1 H,
m), 3.52–3.63 (4 H, m), 3.45–3.47 (2 H, m), 3.37 (3 H, s), 2.69
(3 H, s), 2.30–2.46 (2 H, m), 1.94–2.05 (5 H, m), 1.58–1.63 (1
H, m), 1.07–1.43 (4 H, m), 0.87 (9 H, s), 0.86 (9 H, s), 0.79 (3
H, d, J 6.9), 0.03 (6 H, s), 0.02 (6 H, s); dC(75.5 MHz; CDCl3;
Me4Si) 164.5, 152.8, 138.4, 132.0, 125.2, 121.5, 115.9, 92.7, 81.7,
75.8, 71.8, 67.0, 65.3, 59.0, 35.2, 33.4, 31.9, 27.8, 27.7, 26.0,
25.9, 19.2, 18.4, 18.2, 13.8, 13.4, −4.0, −4.8, −5.3, −5.4; ESI:
m/z 656, 678 [Na adduct]; HRMS-ESI: (Na adduct) 656.4202
(actual), 656.4200 (calcd).
4-((1E,3S,5Z,10S)-3-(2-Methoxyethoxymethoxy)-2,10-
dimethyl-11-oxoundeca-1,5-dienyl)-2-methylthiazole,
C21H33O4NS, 3
The silyl ether 55 (0.5 g, 0.7 mmol) was dissolved in 2.0 mL of
THF, and 0.5 mL of AcOH and 0.5 mL of H2O were added
to the reaction mixture. After the completion of the reaction
as indicated by TLC, the reaction mixture was concentrated
in vacuo and worked up with ether and water. The combined
organic layers were dried (MgSO4), and concentrated under
reduced pressure. The crude diol OH-55 was utilized for the
next step without further purification. The diol OH-55 was
dissolved in benzene (4.0 mL) and stirred at 25 ◦C. Pb(OAc)4
(0.7 g, 1.5 mmol) was added to the reaction mixture and stirred
for 20 min. After the completion of the reaction as indicated
by TLC, the reaction mixture was worked up with ether and
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 3 8 1 2 – 3 8 2 4
3 8 2 3