Bicyclo[4.3.0]nonanes by an Organocatalytic Intramolecular Diels–Alder Reaction
11.8 min for (S,R); the retention time for (R,S) was 9.4 min. 1H
oil. Rf (40% MTBE in hexanes) = 0.35. UV: λ(max) = 239 nm.
FULL PAPER
NMR (CDCl3, 400.132 MHz): δ = 7.32–7.24 (m, 8 H), 6.85–6.83 HPLC (5% iPrOH in hexanes). The retention time of the minor
(m, 2 H), 5.14 (d, J = 1.5 Hz, 1 H), 3.88 (t, J = 0.5 Hz, 1 H), 3.28– diastereomer was 11.4 min, and of the major diastereomer
3.16 (m, 2 H), 2.56 (s, 3 H) ppm. 13C NMR (CDCl3, 100.62 MHz):
δ = 174.4, 138.4, 136.7, 129.8, 129.5, 129.0, 128.8, 127.1, 126.9,
77.6, 60.4, 36.8, 27.3 ppm. HRMS (ES+): calcd. for [M + 1]
(C17H19N2O): 267.1497; found 267.1484.
13.7 min. The enantiomeric excess was 72%. [α]2D0 = +92.5 (c =
0.32, MeOH). 1H NMR (CDCl3, 400.132 MHz): δ = 7.33 (m, 5 H),
5.90 (d, J = 9.8 Hz, 1 H), 5.45 (ddd, J = 9.6, 4.3, 2.4 Hz, 1 H), 4.52
(s, 2 H), 3.67–3.51 (m, 4 H), 3.35 (dd, J = 9.6, 1.7 Hz, 1 H), 2.84
(m, 1 H), 2.02 (m, 1 H), 1.80–1.68 (m, 6 H), 1.22–1.08 (m, 2 H)
ppm. 13C NMR (CDCl3, 100.62 MHz): δ = 137.2, 132.2, 128.6,
128.1, 128.0, 127.4, 73.6, 71.2, 63.2, 46.1, 44.5, 41.7, 38.7, 28.7,
27.1, 22.5 ppm. HRMS (EI): calcd. for C18H24O2: 272.1776; found
272.1786.
(2S,5S)-3,5-Dibenzyl-2-tert-butylimidazolidin-4-one (12a): Free
amine 11 (2.22 g, 8.73 mmol, 100 mol %) was dissolved in MeOH
(15 mL). Trimethylacetaldehyde (0.83 g, 9.60 mmol, 110 mol %)
and para-toluenesulfonic acid monohydrate (0.17 g, 0.87 mmol,
10 mol %) were added. The resulting mixture was warmed with an
oil bath to +75 °C. Stirring was continued under reflux for 2 d and
the reaction mixture was allowed to cool to room temp. The sol-
vents were evaporated to give 2.72 g of a yellow oil. The crude
product was purified by flash chromatography (32% EtOAc/hex-
ane) to yield 12a (0.52 g, 18%) as a clear oil. The ratio of (S,S)/
(S,R/R,S) was 1:2 by 1H NMR spectroscopy. Rf (S,S) (70% EtOAc/
hexane) = 0.49. [α]2D0 = –128.0 (c = 1.11, CHCl3). Rf (S,R/R,S)
Acknowledgments
This research was financially supported by the Ministry of Educa-
tion of Finland (Graduate School of Bioorganic Chemistry Pro-
gram) and the National Technology Agency (TEKES, Finland).
1
(70% EtOAc/hexane) = 0.65. H NMR (CDCl3, 400.132 MHz): δ
[1] N. Sata, N. Fusetani, Tetrahedron Lett. 2000, 41, 489–492.
[2] a) S. Coval, P. Scheuer, J. Org. Chem. 1985, 50, 3024–3025; b)
A. Spinella, L. Alvarez, G. Cimino, Tetrahedron 1993, 49,
3203–3210.
[3] J. Westley, R., Evans, Jr., C.-M. Liu, T. Hermann, J. Blount, J.
Am. Chem. Soc. 1978, 100, 6784–6786.
= 7.32–7.13 (m, 10 H), 5.06 (d, J = 15.7, 1 H), 4.25 (d, J = 15.7 Hz,
1 H), 4.13 (s, 1 H), 3.85 (ddd, J = 7.5, 4.1, 1.4 Hz, 1 H), 3.22 (dd,
J = 13.7, 4.1 Hz, 1 H), 3.04 (dd, J = 13.7, 7.5 Hz, 1 H), 0.76 (s, 9
H) ppm. 13C NMR (CDCl3, 100.62 MHz): δ = 174.4, 138.4, 136.7,
129.8, 129.5, 129.0, 128.8, 127.1, 126.9, 77.6, 60.4, 36.8, 27.3 ppm.
The (S,S) configuration was confirmed by COSYGPGF (coupling
between δ = 4.13 and 3.85 ppm was observed). HRMS (EI): calcd.
for C21H26N2O: 322.2045; found 321.1994 for [M – 1].
[4] S. Larsen, L. Boeck, J. Mertz, J. Paschal, J. Occolowitz, J. Anti-
biot. 1988, 41, 1170–1177.
[5] P. Toth, V. Szell, I. Koczka, G. Horvath, I. M. Szabo, M.
Szayly, G. Ambrus, J. Bedo, J. Berdy, Janos et al., Hung. Teljes
1989, HU 49909; Chem. Abstr. 1990, 113, 130720.
[6] N. Murenets, M. Kudinova, T. Korobkova, T. Drobysheva, N.
Klyuev, I. Yartseva, T. Ivanova, L. Ivanitskaya, Antibiot. Med.
Biotekhnol. 1987, 32, 811–814; Chem. Abstr. 1988, 108, 34547.
[7] S. Miao, M. Anstee, V. Baichwal, A. Park, Tetrahedron Lett.
1995, 36, 5699–5702.
[8] a) K. Shindo, H. Kawai, J. Antiobiot. 1992, 45, 292–295; b) K.
Shindo, M. Matsuoka, H. Kawai, J. Antiobiot. 1996, 49, 241–
243; c) K. Shindo, H. Iijima, H. Kawai, J. Antiobiot. 1996, 49,
244–248; d) K. Shindo, M. Sakakibara, H. Kawai, J. Antiobiot.
1996, 49, 249–252.
(3aS*,4R*,5S*,7aR*)-5-Benzyloxymethyl-2,3,3a,4,5,7a-hexahydro-
1H-indene-4-carbaldehyde (13): (2S,5S)-5-Benzyl-2-tert-butyl-3-
methylimidazolidin-4-one (8, 128 mg, 0.52 mmol, 6 mol %) was dis-
solved in CH3CN (20 mL) and an aqueous solution of HCl (0.1 m,
5.2 mL) was added. The resulting mixture was stirred for 5 min
and triene aldehyde 3 (65 wt %, 2.50 g, 9.25 mmol, 100 mol %) in
CH3CN (32 mL) was added. The reaction mixture was stirred for
20 h and diluted with diethyl ether (200 mL) and washed with H2O
(50 mL) and brine (50 mL). The organic phase was dried with
MgSO4, filtered, and concentrated to give 2.8 g of a yellow oil. The
crude product was purified by flash chromatography (5% EtOAc/
hexane) to give 13 (1.23 g, 79%, 72% ee) as a clear oil. The
[9] a) K. Jomon, M. Ajisaka, H. Sakai, J. Antibiot. 1972, 25, 271–
273; b) S. Ito, Y. Hirata, Tetrahedron Lett. 1972, 13, 1181–1184
and 1185–1188; c) S. Ito, Y. Hirata, Tetrahedron Lett. 1972, 13,
2557–2560.
branched triene aldehyde
4 was easily separated by flash
chromatography. The enantiomeric excess was determined by chiral
[10] L. Boeck, H. Chio, T. Eaton, O. Godfrey, K. Michel, W. Nakat-
sukasa, R. Yao, (Eli Lilly) Eur. Pat. Appl. EP375316, 1990;
Chem. Abstr. 1991, 114, 80066.
[11] W. Roush, A. Myers, J. Org. Chem. 1981, 46, 1509–1511; W.
Roush, S. Peseckis, Tetrahedron Lett. 1982, 23, 4879–4882; W.
Roush, S. Peseckis, A. Walts, J. Org. Chem. 1984, 49, 3429–
3432.
[12] K. Nicolaou, R. Magolda, J. Org. Chem. 1981, 46, 1506–1508;
K. Nicolaou, D. Papahatjis, D. Claremon, R. Dolle, III, J. Am.
Chem. Soc. 1981, 103, 6967–6969; K. Nicolaou, D. Claremon,
D. Papahatjis, R. Magolda, J. Am. Chem. Soc. 1981, 103, 6969–
6971. For full paper see: K. Nicolaou, D. Papahatjis, D.
Claremon, R. Magolda, R. Dolle, J. Org. Chem. 1985, 50,
1440–1456.
HPLC from the corresponding alcohol 14. Rf (20% MTBE in hex-
1
anes) = 0.34. [α]2D0 = +23.3 (c = 1.33, CDCl3). H NMR (CDCl3,
400.132 MHz): δ = 9.77 (d, J = 2.8 Hz, 1 H), 7.34–7.27 (m, 5 H),
5.96 (d, J = 9.9 Hz, 1 H), 5.47 (ddd, J = 9.9, 3.9, 2.6 Hz, 1 H), 4.41
(d, J = 11.6 Hz, 1 H), 4.33 (d, J = 11.6 Hz, 1 H), 3.44 (dd, J = 9.9,
3.6 Hz, 1 H), 3.37 (t, J = 9.4 Hz, 1 H), 3.09 (m, 1 H), 2.61 (ddd, J
= 11.6, 6.5, 2.7 Hz, 1 H), 2.06 (m, 1 H), 1.84–1.61 (m, 5 H), 1.17–
1.04 (m, 2 H) ppm. 13C NMR (CDCl3, 100.62 MHz): δ = 203.2,
137.7, 132.3, 128.4, 127.8, 127.7, 126.2, 72.8, 70.7, 55.3, 45.0, 39.8,
39.6, 28.4, 27.6, 22.4 ppm. LRMS (EI+): m/z (%) = 270, 180, 105,
91 (100), 79, 65. HRMS (EI): calcd. for C18H22O2: 270.1620; found
270.1624.
[13] R. Boeckman, E. Enholm, D. Demko, A. Charette, J. Org.
Chem. 1986, 51, 4743–4745.
[14] a) M. Edwards, S. Ley, S. Lister, Tetrahedron Lett. 1981, 22,
361–364; b) M. Edwards, S. Ley, S. Lister, B. Palmer, J. Chem.
Soc., Chem. Commun. 1983, 630–633; c) M. Edwards, S. Ley,
S. Lister, B. Palmer, D. Williams, J. Org. Chem. 1984, 49, 3503–
3516.
(3aS*,4R*,5S*,7aR*)-(5-Benzyloxymethyl-2,3,3a,4,5,7a-hexahydro-
1H-inden-4-yl)methanol (14): The cyclic aldehyde 13 (9 mg,
0.033 mmol, 100 mol %) was dissolved in EtOH (1 mL), and
NaBH4 (excess) was added at room temp. The reaction mixture was
stirred for 1 h and quenched with aqueous citric acid (5 wt %,
1 mL). The product was extracted with diethyl ether (3×2 mL) and
washed with brine (2 mL). The organic phase was dried with
Na2SO4, filtered, and concentrated to give 14 (9.3 mg) as a clear
[15] M. Kurth, D. Burns, M. O’Brien, J. Org. Chem. 1984, 49, 731–
733.
Eur. J. Org. Chem. 2005, 1620–1624
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1623