Organic Letters
Letter
Overcoming the Limitations of C-H Activation with Strongly
Coordinating N-Heterocycles by Cobalt Catalysis. Angew. Chem.,
Int. Ed. 2016, 55, 10386−10390. (d) Nicolle, S. M.; Lewis, W.; Hayes,
C. J.; Moody, C. J. Stereoselective Synthesis of Functionalized
Pyrrolidines by the Diverted N-H Insertion Reaction of Metal-
locarbenes with β-Aminoketone Derivatives. Angew. Chem., Int. Ed.
2016, 55, 3749−3753. (e) Hou, Z.-W.; Mao, Z.-Y.; Zhao, H.-B.;
Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H.-C. Electrochemical C-H/N-H
Functionalization for the Synthesis of Highly Functionalized (Aza)-
indoles. Angew. Chem., Int. Ed. 2016, 55, 9168−9172. (f) Mahato, S.;
Haldar, S.; Jana, C. K. Diastereoselective α-C−H functionalization of
aliphatic N-heterocycles: an efficient route to ring fused oxazines.
Chem. Commun. 2014, 50, 332−334. (g) Wang, H.; Wang, Y.; Liang,
D.; Liu, L.; Zhang, J.; Zhu, Q. Copper-Catalyzed Intramolecular
Dehydrogenative Amino oxygenation: Direct Access to Formyl-
Substituted Aromatic N-Heterocycles. Angew. Chem., Int. Ed. 2011,
50, 5678−5681.
(3) Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.;
Baptista, P.; Fernandes, A. Heterocyclic Anticancer Compounds:
Recent Advances and the Paradigm Shift towards the Use of
Nanomedicine’s Tool Box. Molecules 2015, 20, 16852−16891.
(4) For selected examples on pyrroles, see: (a) Guchhait, S. K.;
Sisodiya, S.; Saini, M.; Shah, Y. V.; Kumar, G.; Daniel, D. P.; Hura,
N.; Chaudhary, V. Synthesis of Polyfunctionalized Pyrroles via a
Tandem Reaction of Michael Addition and Intramolecular Cyanide-
Mediated Nitrile-to-Nitrile Condensation. J. Org. Chem. 2018, 83,
5807−5815. (b) Qiu, G.; Wang, Q.; Zhu, J. Palladium-Catalyzed
Three-Component Reaction of Propargyl Carbonates, Isocyanides,
and Alcohols or Water: Switchable Synthesis of Pyrroles and Its
Bicyclic Analogues. Org. Lett. 2017, 19, 270−273. (c) Gao, P.; Wang,
J.; Bai, Z.-J.; Shen, L.; Yan, Y.-Y.; Yang, D.-S.; Fan, M.-J.; Guan, Z.-H.
Synthesis of Polycarbonyl Pyrroles via K2S2O8-Mediated Oxidative
Cyclization of Enamines. Org. Lett. 2016, 18, 6074−6077.
of Oxime Ester-Tethered Alkenes with Boronic Acids. ACS Catal.
2017, 7, 8441−8445. (d) Walton, J. C. Synthetic Strategies for 5- and
6-Membered Ring Aza- heterocycles Facilitated by Iminyl Radicals.
Molecules 2016, 21, 660. (e) Walton, J. C. The Oxime Portmanteau
Motif: Released Heteroradicals Undergo Incisive EPR Interrogation
and Deliver Diverse Heterocycles. Acc. Chem. Res. 2014, 47, 1406−
1416. (f) Faulkner, A.; Scott, J. S.; Bower, J. F. Palladium catalyzed
cyclizations of oxime esters with 1,1-disubstituted alkenes: synthesis
of α, α-disubstituted dihydropyrroles and studies towards an
asymmetric protocol. Chem. Commun. 2013, 49, 1521−1523.
(g) Race, N. J.; Bower, J. F. Palladium Catalyzed Cyclizations of
Oxime Esters with 1,2-Disubstituted Alkenes: Synthesis of Dihy-
dropyrroles. Org. Lett. 2013, 15, 4616−4619.
(7) For selected recent reviews on 1,5-HAT, see: (a) Stateman, L.
M.; Nakafuku, K. M.; Nagib, D. A. Remote C−H Functionalization
via Selective Hydrogen Atom Transfer. Synthesis 2018, 50, 1569−
1586. (b) Capaldo, L.; Ravelli, D. Hydrogen Atom Transfer (HAT):
A Versatile Strategy for Substrate Activation in Photocatalyzed
Organic Synthesis. Eur. J. Org. Chem. 2017, 2017, 2056−2071.
(c) Hu, X.-Q.; Chen, J.-R.; Xiao, W.-J. Controllable Remote C-H
Bond Functionalization by Visible-Light Photocatalysis. Angew. Chem.,
Int. Ed. 2017, 56, 1960−1962.
(8) For recent selected examples on 1,5-HAT, see: (a) Wu, X.;
Wang, M.; Huan, L.; Wang, D.; Wang, J.; Zhu, C. Tertiary-Alcohol-
Directed Functionalization of Remote C(sp3)−H Bonds by
Sequential Hydrogen Atom and Heteroaryl Migrations. Angew.
Chem., Int. Ed. 2018, 57, 1640−1644. (b) Hu, A.; Guo, J.-J.; Pan,
H.; Tang, H.; Gao, Z.; Zuo, Z. δ-Selective Functionalization of
Alkanols Enabled by Visible-Light-Induced Ligand-to-Metal Charge
Transfer. J. Am. Chem. Soc. 2018, 140, 1612−1616. (c) Ratushnyy,
M.; Parasram, M.; Wang, Y.; Gevorgyan, V. Palladium-Catalyzed
Atom-Transfer Radical Cyclization at Remote Unactivated C(sp3)−H
Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical
Intermediates. Angew. Chem., Int. Ed. 2018, 57, 2712−2715.
(d) Chen, D.-F.; Chu, J. C. K.; Rovis, T. Directed γ-C(sp3)−H
Alkylation of Carboxylic Acid Derivatives through Visible Light
Photoredox Catalysis. J. Am. Chem. Soc. 2017, 139, 14897−14900.
(e) Chen, J.-Q.; Wei, Y.-L.; Xu, G.-Q.; Liang, Y.-M.; Xu, P.-F.
Intramolecular 1,5-H transfer reaction of aryl iodides through visible-
light photoredox catalysis: a concise method for the synthesis of
natural product scaffolds. Chem. Commun. 2016, 52, 6455−6458.
(f) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R.
Catalytic alkylation of remote C−H bonds enabled by proton-coupled
electron transfer. Nature 2016, 539, 268−271. (g) Chu, J. C. K.;
Rovis, T. Amide-directed photoredox-catalysed C−C bond formation
at unactivated sp3 C−H bonds. Nature 2016, 539, 272−275.
(9) For recent examples on 1,5-HAT by the Leonori group, see:
(a) Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.;
Leonori, D. Photoinduced Remote Functionalisations by Iminyl
Radical Promoted C−C and C−H Bond Cleavage Cascades. Angew.
Chem., Int. Ed. 2018, 57, 744−748. (b) Davies, J.; Sheikh, N. S.;
Leonori, D. Photoredox Imino Functionalizations of Olefins. Angew.
Chem., Int. Ed. 2017, 56, 13361−13365. (c) Reina, D. F.; Dauncey, E.
M.; Morcillo, S. P.; Svejstrup, T. D.; Popescu, M. V.; Douglas, J. J.;
Sheikh, N. S.; Leonori, D. Visible-Light-Mediated 5-exo-dig
Cyclizations of Amidyl Radicals. Eur. J. Org. Chem. 2017, 2017,
2108−2111. (d) Davies, J.; Svejstrup, T. D.; Fernandez Reina, D.;
Sheikh, N. S.; Leonori, D. Visible-Light-Mediated Synthesis of Amidyl
Radicals: Transition-Metal-Free Hydroamination and N-Arylation
Reactions. J. Am. Chem. Soc. 2016, 138, 8092−8095. (e) Davies, J.;
Booth, S. G.; Essafi, S.; Dryfe, R. A.; Leonori, D. Visible-Light-
Mediated Generation of Nitrogen-Centered Radicals: Metal-Free
Hydroimination and Iminohydroxylation Cyclization Reactions.
Angew. Chem., Int. Ed. 2015, 54, 14017−14021.
(5) For selected examples on dihydropyrroles, see: (a) Zeng, J.-C.;
Xu, H.; Huang, R.-L.; Yu, F.; Zhang, Z. Facile synthesis of
polysubstituted 2,3-dihydropyrroles and pyrroles from Mn(OAc)3-
promoted oxidative cyclization of alkenes with amines/alkyne esters
or enaminone esters. Tetrahedron Lett. 2018, 59, 1576−1580.
(b) Wang, R.; OuYang, Y.; Xu, C.; Yi, N.; Jiang, J.; Deng, W.;
Zeng, Z.; Xiang, J. Hypervalent iodine-triggered transformation of
homopropargyl sulfonamides into dihalo-2,3-dihydropyrroles. Org.
Biomol. Chem. 2017, 15, 796−800. (c) Majhail, M. K.; Ylioja, P. M.;
Willis, M. C. Direct Synthesis of Highly Substituted Pyrroles and
Dihydropyrroles Using Linear Selective Hydroacylation Reactions.
Chem. - Eur. J. 2016, 22, 7879−7884. (d) Yoshida, M.; Kobayashi, A.;
Nakayama, A.; Namba, K. Synthesis of functionalized 2,3-
dihydropyrroles by oxidative radical cyclization of N-Sulfonyl β-
enamino esters with alkenes. Tetrahedron 2016, 72, 2544−2551.
(e) Li, Y.; Xu, H.; Xing, M.; Huang, F.; Jia, J.; Gao, J. Iodine-
Promoted Construction of Polysubstituted 2,3-Dihydropyrroles from
Chalcones and β-Enamine Ketones (Esters). Org. Lett. 2015, 17,
3690−3693. (f) Chen, J.; Li, J.; Wang, J.; Li, H.; Wang, W.; Guo, Y.
Phosphine-Catalyzed Aza-MBH Reactions of Vinylpyridines: Efficient
and Rapid Access to 2,3,5-Triarylsubstituted 3-Pyrrolines. Org. Lett.
2015, 17, 2214−2217. (g) Xiang, J.; Xie, H.; Li, Z.; Dang, Q.; Bai, X.
Stereoselective Synthesis of 3-Carboxy-4,5-dihydropyrroles via an
Intramolecular Iminium Ion Cyclization Reaction. Org. Lett. 2015, 17,
́
3818−3821. (h) Souto, J. A.; Becker, P.; Iglesias, A.; Muniz, K. Metal-
̃
Free Iodine(III)-Promoted Direct Intermolecular C−H Amination
Reactions of Acetylenes. J. Am. Chem. Soc. 2012, 134, 15505−15511.
(6) For the generation of pyrroles and dihydropyrroles via oxime
derivatives, see: (a) Xie, Y.; Li, Y.; Chen, X.; Liu, Y.; Zhang, W.
Copper/amine-catalyzed formal regioselective [3 + 2] cycloaddition
of an α,β-unsaturated O-acetyl oxime with enals. Org. Chem. Front.
2018, 5, 1698−1701. (b) Guo, K.; Zhang, H.; Cao, S.; Gu, C.; Zhou,
H.; Li, J.; Zhu, Y. Copper-Catalyzed Domino Cyclization/
Trifluoromethylthiolation of Unactivated Alkenes: Access to SCF3-
Containing Pyrrolines. Org. Lett. 2018, 20, 2261−2264. (c) Yang, H.-
B.; Pathipati, S. R.; Selander, N. Nickel-Catalyzed 1,2-Aminoarylation
(10) For recent examples on 1,5-HAT by the Studer group, see:
(a) Jiang, H.; Studer, A. α-Aminoxy-Acid-Auxiliary-Enabled Inter-
molecular Radical γ-C(sp3)−H Functionalization of Ketones. Angew.
Chem., Int. Ed. 2018, 57, 1692−1696. (b) Jiang, H.; Studer, A. Iminyl-
Radicals by Oxidation of α-Imino-oxy Acids: Photoredox Neutral
E
Org. Lett. XXXX, XXX, XXX−XXX