Communications
N. L. Holy, R. C. Kerber, M. T. Musser, D. H. Snow, J. Am.
Chem. Soc. 1967, 89, 725 – 727.
[1] a) N. Kornblum, R. A. Smiley, R. K. Blackwood, D. C. Iffland, J.
Am. Chem. Soc. 1955, 77, 6269 – 6280; b) N. Kornblum, H. O.
Larson, R. K. Blackwood, D. D. Mooberry, E. P. Oliveto, G. E.
Graham, J. Am. Chem. Soc. 1956, 78, 1497 – 1501; c) N.
Kornblum, R. A. Smiley, H. E. Ungnade, A. M. White, B.
Taub, S. A. Herbert, Jr., J. Am. Chem. Soc. 1955, 77, 5528 –
5533; d) N. Kornblum, H. O. Larson, D. D. Mooberry, R. K.
Blackwood, E. P. Oliveto, G. E. Graham, Chem. Ind. 1955, 78,
443; e) N. Kornblum, Organic Reactions, Vol. 12 1962, 101 – 156;
f) N. Kornblum, L. Fishbein, R. A. Smiley, J. Am. Chem. Soc.
1955, 77, 6261 – 6266.
[12] a) J. F. Liebman, M. S. Campbell, S. W. Slayden in The Chemistry
of Amino, Nitroso, Nitro and Related Groups, Supplement F2
(Ed.: S. Patai), Wiley, Chichester, 1996, chap. 8, p. 340; b) B. M.
Rice, S. V. Pai, J. Hare, Combust. Flame 1999, 118, 445 – 458;
c) “Neutral Thermochemical Data”: H. Y. Afeefy, J. F. Liebman,
S. E. Stein in NIST Chemistry WebBook (Eds.: P. J. Linstrom,
W. G. Mallard), NIST Standard Reference Database Number 69,
National Institute of Standards and Technology, Gaithersburg
MD, 20899, 2003 (http://webbook.nist.gov).
[13] These results disagree with the claim ꢀthat malachite green ((4-
Me2NC6H4)2PhC+) reacts with NO2 in acetone and ethyl
acetate yielding (4-Me2NC6H4)2PhC-ONO as the kinetic product
followed by slow (for a UV/Vis spectrometer with a regular
mixing mode) irreversible formation of the more stable (4-
Me2NC6H4)2PhC-NO2: O. H. Abed, N. S. Isaacs, J. Chem. Soc.
Perkin Trans. 2 1983, 839 – 842. Since the electrophilicity
parameter of (4-Me2NC6H4)2PhC+ (E = ꢀ10.29, ref. [8b]) is
comparable to that of 1a (E = ꢀ10.04), the rate constant
reported by Isaacs for the reaction of (4-Me2NC6H4)2PhC+
[2] a) R. G. Pearson, J. Songstad, J. Am. Chem. Soc. 1967, 89, 1827 –
1836; b) G. Klopman, J. Am. Chem. Soc. 1968, 90, 223 – 234;
c) R. F. Hudson, Angew. Chem. 1973, 85, 63 – 84; Angew. Chem.
Int. Ed. Engl. 1973, 12, 36 – 57; d) S. J. Formosinho, L. G. Arnaut,
J. Chem. Soc. Perkin Trans. 21989, 1947 – 1952; e) K.-O. Schoeps,
C. Halldin, S. Stone-Elander, B. Långström, T. Greitz, J.
Labelled Compd. Radiopharm. 1988, 25, 749 – 758.
[3] a) I. Fleming, Frontier Orbitals and Organic Chemical Reactions,
Wiley, Chichester, 1976, p. 41 – 42; b) A. Streitwieser, C. H.
Heathcock, E. M. Kosower, Introduction to Organic Chemistry,
Macmillan, New York, 1992, p. 779; This statement is in line with
Kornblumꢀs report (p. 114 in ref. [1e]): “In the synthesis of
saturated primary nitro compounds, silver nitrite gives nitro-
paraffins in about 80% yield as against about 60% yields
obtained with sodium nitrite. While silver nitrite is, therefore, the
reagent of choice here, the lower cost and ready availability of
sodium nitrite, the not very large disparity in yield, and the shorter
reaction time all combine to make sodium nitrite an excellent
second choice.”
ꢀ
with NO2 in acetonitrile is more than six orders of magnitude
smaller than expected for the formation of either (4-
Me2NC6H4)2PhC-NO2 or (4-Me2NC6H4)2PhC-ONO.
[14] Addition of NOCl to solutions of benzhydrols (1a–h)-OH in the
presence of Et3N led to the immediate development of blue
color characteristic for the corresponding benzhydryl cations.
[15] a) Ph2CH-NO2 was reported to convert into benzophenone
spontaneously: H. Feuer, H. Friedman, J. Org. Chem. 1975, 40,
187 – 190; b) For the conversion of secondary nitro compounds
into ketones in the presence of NO2ꢀ, see: N. Kornblum, R. K.
Blackwood, D. D. Mooberry, J. Am. Chem. Soc. 1956, 78, 1501 –
1504; c) A. Gissot, S. NꢀGouela, C. Matt, A. Wagner, C.
Mioskowski, J. Org. Chem. 2004, 69, 8997 – 9001.
[16] Preferential or exclusive formation of nitrites was reported for
reactions of tert-alkyl halides as well as 4-methoxybenzyl
bromide and 1-phenylethyl chloride with AgNO2 in Et2O (see
refs. [1a,c,f]).
[17] H. Lemmetyinen, L. Lehtinen, J. Koskikallio, Finn. Chem. Lett.
1979, 6, 72 – 75.
[4] a) R. Loos, S. Kobayashi, H. Mayr, J. Am. Chem. Soc. 2003, 125,
14126 – 14132; b) A. A. Tishkov, H. Mayr, Angew. Chem. 2005,
117, 145 – 148; Angew. Chem. Int. Ed. 2005, 44, 142 – 145.
[5] a) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker,
B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J.
Am. Chem. Soc. 2001, 123, 9500 – 9512; b) H. Mayr, B. Kempf,
A. R. Ofial, Acc. Chem. Res. 2003, 36, 66 – 77.
[6] J. Bartl, S. Steenken, H. Mayr, J. Am. Chem. Soc. 1991, 113,
7710 – 7716.
[7] The laser flash photolysis was performed using state-of-the-art
femtosecond pulses as excitation and light-emitting diodes
(LEDs) as sources of monitoring beams. New instrumentation
was developed that is compatible with standard pump probe
setups. Details of this method will be published separately: U.
Schmidhammer, S. Roth, E. Riedle, A. A. Tishkov, H. Mayr,
Rev. Sci. Instrum. 2005, submitted.
[8] a) S. Minegishi, R. Loos, S. Kobayashi, H. Mayr, J. Am. Chem.
Soc. 2005, 127, 2641 – 2649; b) S. Minegishi, H. Mayr, J. Am.
Chem. Soc. 2003, 125, 286 – 295; c) R. Lucius, R. Loos, H. Mayr,
Angew. Chem. 2002, 114, 97 – 102; Angew. Chem. Int. Ed. 2002,
41, 91 – 95; d) T. Bug, H. Mayr, J. Am. Chem. Soc. 2003, 125,
12980 – 12986; e) T. Bug, T. Lemek, H. Mayr, J. Org. Chem.
2004, 69, 7565 – 7576.
[9] Because of the ease of the transformation of diarylnitrome-
thanes into the corresponding benzophenones (see Scheme 2)
these reactions were performed in NMR tubes and analyzed
immediately after the reagents had been mixed.
[10] D. M. Grant, R. K. Harris, Encyclopedia of Nuclear Magnetic
Resonance, Vol. 5, Wiley, Chichester, 1996, p. 3232.
[11] The nonobservance of tetraarylethanes indicates that electron-
transfer processes do not occur under these conditions; see: a) N.
Kornblum, L. Cheng, T. M. Davies, G. W. Earl, N. L. Holy, R. C.
Kerber, M. M. Kestner, J. W. Manthey, M. T. Musser, H. W.
Pinnick, D. H. Snow, F. W. Stuchal, R. T. Swiger, J. Org. Chem.
1987, 52, 196 – 204; b) N. Kornblum, T. M. Davies, G. W. Earl,
4626
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 4623 –4626